EX7/3 Progress of High-Performance Steady-State Plasmas and Critical PWI issue in the LHD (H. Kasahara et al.)

region)

M. Kikuchi in JAEA

Dome

Carbon rich mixed-material layer (densely, hard and brittle) was covered on the dome plates (C > 90%, Fe ~ a few %)

The layer was grew around The geometrically dense region and large heat flux $\Gamma_{heat} \sim MW/m^2$ -class. The thick layer was easily exfoliated during SSO. (the ultra-long pulse plasma was broken by the exfoliations (12 cm x 10 cm)

Improvements of Heating and PWI devices and the integrated plasma operation extend SSO regions:

The ultra-long pulse (τ_d ~ 48 min): $n_e \tau_E T_i$ ~ 3.5x10¹⁸ keVm⁻³s, n_e ~ 1.2x10¹⁹ m⁻³, T_e ~ T_i ~ 2 keV, P_{RF} ~ 1.2 MW (ICH+ECH), P_{inj} ~ 3.4 GJ. (τ_E ~ 2 P_e /0.7* P_{RF})
The long pulse (τ_d ~ 6 min): n_e ~ 3.3x10¹⁹ m⁻³, T_e ~ T_i ~ 1.5 keV, P_{RF} ~ 2.3 MW (ICH+ECH). (Extending to high power SSO

High-performance SSO caused thick Carbon-rich mixed-material layer:

- Affect to the particle balances:
 10.1(t < 300s) → < 0.2(t = 500 ~ 1300s)
 → 1.5 x10¹⁹ (t > 1500s) He/s
- The thickness ~ 40 nm/10000 sec

 Capture particles ~ 2.3 x 10¹⁸ He/s

 (The layer covers 1/5 of the surface of the vacuum vessel.)