### **Overview of Fusion Reactor Materials Study at SWIP**

#### Liu Xiang

#### Southwestern Institute of Physics, Chengdu, China

Co-authors: J.M. Chen, P.F. Zheng, P.H. Wang, J.H. Wu, Y.Y. Lian, Y.J. Feng, K,M, Feng, Z.Y. Xu, X.R. Duan and Y. Liu

SWIP Southwestern Institute of Physics

### Outline

- 1. Motivations
- 2. Plasma facing materials/components.
- W alloys
- W joining with heat sink or structural materials
- 3. Structural materials.
- Ferrite/martensite steels
- Vanadium alloys
- 4. Functional materials.
- Tritium breeder Neutron multiplier
- 5. Summary

### **Motivations**



### **Plasma facing materials**

W alloys



### **Plasma facing materials**

### Fast CVD-W coating (up to 0.5 mm/h)



#### Microstructure characterization



| 0.3-0.5 mm/h |
|--------------|
| 1-3mm        |
| 99.9999%     |
| >180 W.m/K   |
| >99%         |
| 430          |
| W/Cu >50Mpa  |
|              |

### **Transient event simulations of W materials**

#### disruption-like thermal loads (single shot)



#### CVD-W seems more sensitivity to the cracking suppression at elevated temperature



#### **Numerical simulations**



#### Numerical simulations



Southwestern Institute of Physics

### **Plasma facing components**

#### --W/CuCrZr mockups--





#### Inductive melting + Forging + Cold rolling



Cold rolling

#### No. melting reprocess O content **Re-melting** Inductive 75 ppm melting 1times 2 Inductive Add C 126 ppm melting powder Inductive Re-melting 2 3 40 ppm melting times 4 Resistance Add deoxidizer heating

Processes

0 1 2 3 4 Time /h Already developed technique:

400 °C

**Brazing** 

Fast cooling

480 °C

950 °C

1000

800

600

400

200

° ℃

emperature

 Traditional furnace + fast cooling + aging
 Fast brazing using Electron-Beam
 Cupper coating + HIPing with fast cooling



### **Cu-Mn non-crystalline filler**

#### --Design based on molecular cluster theory--



### **HHF tests--Plasma facing components**



- Castellated mockup (30×60×30 mm)
- with 5 mm thickness of W tile Thermal fatigue tests: (increase water cooling to 10m/s)
  1) Screening test:1-9 MW/m2
  2) 1000 cycles at 8 MW/m2
  Surface temperature variation < 10% No visible damage





#### **EMS 60**

<u>X. Liu et al,</u> ICFRM-16, Oral

### Filler for He cooling divertor targets

#### **Ti-base and Fe-base amorphous brazing alloys**



### **Structural materials-RAFM steel**

#### Composition and fabrication technique optimization--up to 1 ton ingots

•Cooperated with domestic institutes and factories



N as the controllable element, at the upper limit

| Alloy element   | Cr      | С          | W       | Та        | Mn               | V       | ✓ N →      | х<br>А |
|-----------------|---------|------------|---------|-----------|------------------|---------|------------|--------|
| Content control | 8.5±0.3 | 0.11±0.015 | 1.5±0.2 | 0.10±0.03 | 0.5±0.2          | 0.3±0.1 | 0.02-0.035 | ;      |
| Impurity        | S       | Р          | Ti      | В         | Nb               | 0       | Ni         | Мо     |
| Content control | <0.005  | <0.005     | <0.01   | <0.005    | <0.01            | <0.005  | <0.01      | <0.01  |
| Impurity        | Cu      | AI         | Si      | Со        | As               | Sn      | Sb         | Zr     |
| Content control | <0.01   | <0.03      | <0.05   | <0.01     | As+Sn+Sb+Zr<0.05 |         |            |        |



### **Properties database of CLF-1 steel (1)**



Southwestern Institute of Physics

### **Properties database of CLF-1 steel (2)**

10

#### **Thermal creep properties**

- Temperature: 500°C, 550°C, 600°C ;
- Stress level : 250- 300MPa (500°C), 180-260MPa (550°C), 100-160MPa (600°C)

#### **Thermal fatigue properties**

- Temperature: room temperature, 300°C, 500°C ;
- total strain of 0.2%~1%。
- Stress rate of 0.1 %/s



The CLF-1 steel shows adequate creep rupture level with low minimum creep rate long rupture time. Some of the tests have been carried out for more than 11000 h and are still in progress. Cyclic softening was observed at all test temperatures under strain controlled fatigue test. The effect of test temperature on fatigue property of CLF-1 steel is very small.

### **Thermal stability of CLF-1 steel**





- No obvious degradation in tensile properties, only a DBTT shift.
  - thermal ageing did not affect the grain size but strongly affected the precipitation behaviors
- M<sub>23</sub>C<sub>6</sub> type carbides coarsened and agglomerated
- No obvious increase of the MX-type precipitates was observed.
- Higher nitrogen content cause finer MX-type precipitates and the coarsening and agglomeration of  $M_{23}C_6$  carbides is much lower.



### **Neutron irradiation data**

#### --1 dpa data will be available by the end of this year--



High Flux Engineering Test Reactor

#### Neutron irradiation of CLF-1, CLAM steels

Power: 125MW Maximum Flux: 6.2×10<sup>14</sup>n/cm<sup>2</sup>.s

- Post-irradiation examination
- 1) Mechanical properties
- -Tensile properties
- -Charpy impact properties
- 2) Microstructure analysis

#### More detail:

<u>P.H. Wang, Poster</u> <u>MPT/P8-7</u>





### **Material preparation for TBM fabrications**



•According to the structure design of CN HCCB TBM, different joining technologies will be used for the fabrication of the mock-ups, such as:

•Vacuum diffusion welding (VDW): First wall; Sub-module.

•electron beam welding(EB): Sub-module; The welding between the grids and the plates and pipes of the back system.

•Tungsten Inert Gas (TIG): The welding between the grids and the plates and pipes of the back system. Grid and the first wall.

More detail: <u>K.M. Feng, FIP/3-5Ra</u>

Southwestern Institute of Physics



## **Structural materials-V alloys**

#### --Heat treatments of V-4Cr-4Ti--



4+0

2.05 🛏

2.05

5=1888

<u>**R14**</u> 12+001

16 ±005

Work cooperated with M

t = 0.25 + 0.01

Repeated cold working followed by aging (SA+CW+A+CW+A) is effective to strengthen the V-4Cr-4Ti alloy at both room temperature and high temperatures, while the ductility loss is comparatively small.

#### Key point: to stabilize the line defects

### Structural materials-V alloys --Dispersion strengthened--

#### **Co-combined particles dispersion strengthened V alloy**

Mechanical alloyed V-alloys are expected to work at higher temperatures. Research of such V-alloys is a main work in recent years in the word.



### **Structural materials-V alloys**

#### --Dispersion strengthened--



## **Functional materials-Tritium multiplier**

#### Tritium Breeder Material--Li<sub>4</sub>SiO<sub>4</sub> pebbles

- Tritium breeding material of the CN HCCB breeder blanket concept is a ceramic breeder in the form of pebble beds
- <u>Reference option:</u> Lithium Orthosilicate (Li4SiO4; OSi); 1.0 mm pebbles produced by melt-spraying process ;SWIP&KUST
- <u>Back-up option:</u> Lithium Metatitanate (Li2TiO3; MTi); 1.0 mm pebbles; SWIP
- For TBM  $\rightarrow$  Li-6 enrichment of 80 at%







Schematic drawing of melt-spray for OSi



Fabrication facility



### Thermal properties of Li4SiO4 pellets and pebble beds





**SWIP** Southwestern Institute of Physics

### **Thermal properties of Be pebbles**



### Summary

1, Fusion materials study at SWIP is focusing on the applications of HL-2A(M), ITER-TBM and CFETR or DEMO-China.

2, For PFMs/PFCs, several kinds of tungsten based materials are developed, such as oxides and carbides dispersion strengthened W alloy, and a fast CVD-W coating. They shows higher cracking thresholds at transient heat loading. CVD-W indicates a better crack suppression effect at elevated temperature.

3, One kind of RAMF steel CLF-1 is developed for the use of CN-ITER-HCCB TBM. The property data base is being established, including creep tests by more than 11000 h and neutron irradiation data at 0.3-1 dap (by the end of this year). Meanwhile Its qualification is under way according to ITER requirements.

4, An engineering scale V-4Cr-4Ti alloy (30kg) was prepared. Further strengthening by combined Y, Ti and SiC particles was carried out and V-4Cr-4Ti-1.5Y-0.3Ti<sub>3</sub>SiC<sub>2</sub> shows better strengthened effects.

5, Beryllium and  $Li_4SiO_4$  pebbles as neutron and trillium multipliers have been developed and characterized.



**Southwestern Institute of Physics** 

# Jhanks for your attentions !

SWIP Southwestern Institute of Physics