Design Concept of K-DEMO for Near-Term Implementation

Fusion Energy Conference Oct 16th, 2014 National Fusion Research Institute

kkeeman@nfri.re.kr

Background

Mid-Entry Strategy in 1995

KSTAR Mission and Parameters

KSTAR Mission

- To achieve the superconducting tokamak construction and operation experiences, and
 - To develop high performance steadystate operation physics and technologies that are essential for ITER and fusion reactor development

KSTAR Parameters

PARAMETERS	Designed	Achieved
Major radius, <i>R_o</i>	1.8 m	1.8 m
Minor radius, a	0.5 m	0.5 m
Elongation, <i>k</i>	2.0	2.0
Triangularity, δ	0.8	0.8
Plasma volume	17.8 m ³	17.8 m ³
Bootstrap Current, f _{bs}	> 0.7	-
PFC Materials	C, CFC (W)	С
Plasma shape	DN, SN	DN
Plasma current, I _P	2.0 MA	1.0 MA
Toroidal field, B_0	3.5 T	3.6 T
Pulse length	300 s	10 s
β_N	5.0	> 1.5
Plasma fuel	H, D	H, D, He
Superconductor	Nb ₃ Sn, NbTi	Nb ₃ Sn, NbTi
Auxiliary Heating / CD	~ 28 MW	~6 MW
Cryogenic	9 kW @4.5K	5 kW @4.5 K

Research Institute

KSTAR Superconducting Tokamak

KSTAR In-vessel Control Coil System (3-D)

Modular 3D field coils (3 poloidal x 4 toroidal)

- all internal and segmented with saddle loop configurations
- 8 conductors in each coil _
- Control capability : vertical control, radial control, error correction, RMP, RWM
- Wide spectra of Resonance Magnetic Perturbations (RMP) are possible
 - n=1 RMP (phase angles : +90, -90, 180, 0) and n=2 RMP (even or odd narity)

β_N-limit and ELM Suppression

- KSTAR reached βN>2.5 and βN/li> 4.0 "no-wall limit" in H-mode Operation
- ELM suppressed by n=1 RMP (Ip = 600 kA, BT=1.6~2.3T)

KSTAR 2014 Campaign (H-mode > 30 sec)

Fusion Energy Development Promotion Law (FEDPL)

- To establish a long-term and sustainable legal framework for fusion energy development phases.
- To promote industries and institutes which participating the fusion energy development by supports and benefit.
- The first country in the world prepared a legal foundation in fusion energy development.

History of the FEDPL

- 1995. 12 : National Fusion R&D Master Plan
- 2005. 12 : National Fusion Energy Development Plan
- 2007. 3 : Fusion Energy Development Promotion Law
- 2007. 4 : Ratification of ITER Implementation Agreement
- 2007. 8 : Framework Plan of Fusion Energy Development (The first 5-Year Plan)
- 2012. 1 : The 2nd 5-year plan has begun

Vision and Goal of Fusion Energy Development Policy

Policy Goal for Plan-2	R&D for DEMO Technology based on KSTAR and ITER
Primary Strategy for Plan-2	 Attainment of KSTAR high-performance plasma and development of DEMO basic technology Basic research in fusion and cultivation of man power International cooperation and improvement of status in ITER operations Commercialization of fusion/plasma technology and promotion of social acceptance

Introduction

Two Stage Operation

- The operation stage I K-DEMO is not considered as the final DEMO. It is a kind of test facility for a commercial reactor.
 - But the operation stage II K-DEMO will require a major up-grade by replacing the blanket & diverter system and others if required.
 - The operation stage I K-DEMO
 - At initial stage, many of ports will be used for diagnostics for the operation and burning plasma physics study, but many of them will be transformed to the CTF (Component Test Facility).
 - At least more than one port will be designated for the CTF including blanket test facility.
 - It should demonstrate the net electricity generation ($Q_{eng} > 1$) and the self-sufficient Tritium cycle (TBR > 1.05).

The operation stage II K-DEMO

- Though there will be a major upgrade of In-Vessel-Components, at least one port will be designated for CTF for future studies.
- It is expected to demonstrate the net electricity generation larger than 450 MWe and the self-sufficient Tritium cycle.
- Overall all plant availability > 70%.
- Need to demonstrate the competitiveness in COE.

Key Idea of K-DEMO Design

Current Drive and Magnetic Field

- Considering the size, a steady state Tokamak is selected as a K-DEMO.
- Because of high neutron irradiation on ion sources, NBI is not practical for the main off-axis current drive of K-DEMO.
- Because of high density of K-DEMO plasma, high frequency ECCD systems (> 240 GHz) are required in order to minimize the deflection of wave.
- In order to match with the high frequency ECCD, a high toroidal magnetic field Tokamak is required and the magnetic field at plasma center requires > 6.5 T.
- Also, $I_{p,limit} \propto B$, $n_{e, limit} \propto B$, and **Power \propto R^3B^4** [Reactor Cost $\propto R^3B^2$]

Choice of Coolant and Blanket System

- Helium is not considered as a coolant of K-DEMO because of its low heat capacity and a required high pumping power.
- Supercritical water is not considered as a coolant of K-DEMO because of its serious corrosion problem.
- Pressurized water (superheated water) is considered as a main coolant of K-DEMO considering BOP(Balance of Plant).
- Both of ceramic and liquid metal blanket system is considered at this stage. But even in the liquid blanket system, the liquid metal will not be used as a main coolant and a water cooling system will be installed inside the liquid metal blanket.

K-DEMO Parameters

Main Parameters

- R = 6.8 m
- a = 2.1 m
- B-center = 7.0~7.4 T
- B-peak = 16 T
- $\kappa_{95} = 1.8$
- δ = 0.625
- Plasma Current > 12 MA
- Te > 20 keV

Other Feature

- Double Null Configuration
- Vertical Maintenance
- Total H&CD Power = 110~150 MW
- P-fusion = 2200~3000 MWth
- P-net > 400 MWe at Stage II
- Number of Coils : 16 TF, 8 CS, 12 PF

K-DEMO Tokamak Design

Systems Analysis to Explore Configurations

- Scan plasma parameters R, B_T, q₉₅, κ, δ, n/n_{Gr}, β_N, Q (=P_{fus}/P_{input}), n(0)/<n>, T(0)/<T>, τ_p^*/τ_E , η_{CD} , f_{imp}
- Solve 0D plasma power and particle balance
- Pass solutions of viable plasma operating points through engineering and inboard radial build assessments
 - Radiated power to first wall and transported and radiated power in the divertor
 - Plant power balance
 - First wall, blanket, shield, vacuum vessel inboard radial build
 - Toroidal field coil
 - Bucking cylinder, TF superstructure
 - Central solenoid

Filtering viable engineering solutions to meet P_{elec} , q_{div}^{peak} , β_N , H_{98} , etc

☆In collaboration with

Determination of Plasma Geometry

The peak heat flux on the divertor poses a significant $400 < P_{elec} < 700 MW$ $150 < P_{elec} < 400 \text{ MW}$ limitation $\beta_N < 0.035$ $\beta_{N} < 0.05$ $H_{98} < 1.6$ $H_{98} < 1.3$ 3500 $q_{div}^{peak} < 20 \text{ MW/m}^2$ $q_{div}^{peak} < 17.5 \text{ MW/m}^2$ The q_{div}^{peak} is reduced as the < 17.5 < 15< 15 3000 < 12.5 ⁻usion & Electric Power, MW device grows in size 2500 KDEMO will be a first of a lp = 11.7-13.0 MA 2000 kind, desire to reduce the Fusion cost 1500 Ip = 10.5 - 12.2 MA1000 A compromise between the high power and low power 500 Electric operating regimes at R = 6.8m is chosen as the 0 5.0 3.0 4.0 6.0 7.0 8.0 9.0 reference, and $B_{T} \sim 7.4$ T at Major radius, m

the plasma

Operating Spaces, Restricting q_{div}^{peak}

- Stage I operated at lower P_{elec} and β_N, with lower plasma energy confinement reaches up to 350 Mw_e
 - Stage II operated at higher P_{elec} and β_N , with higher plasma energy confinement reaches up to 600 Mw_e
 - I Restricting q_{div}^{peak} ≤ 10 MW/m² shrinks accessible operating space

Heating and Current Drive

TSC, TRANSP and other codes used ($P_{NB} \sim 50$, $P_{LH} \sim 30$, $P_{IH} \sim 20$, $P_{FC} \sim 20$) Ip, MA total input 45Ø total alpha 400 total auxiliary total NICD 12 NB 35Ø BS LH 10 IC & EC Powers, MW 300 NBCD 25Ø 8 line LHCD brem 200 **ICRF/FWCD** cycl 6 150 ECCD 4 100 2 5Ø 12 닡 Ē ø 500 ØØØ 500 2000 2500 3000 3500 4000 000 000 500 2000 2500 3500 1000 3000 time, s time, s power density (rho), W/m³ loss power (rho), W/m³ parallel current density, A/m²-T 250000 150000 Total Total Brem 1500001 BS 200000 albha NBCD Cyc 100000 FW NB 150000 1000000 line ECCD IC LHCD 100000 EC 50000 500000 LH 50000 Ø N æ 4 Ś \sim 6 ω Ś ω S 4

Development of Tokamak Simulator, INFRA

■ Structure of the INFRA Code

(INFRA : INtegrated Fusion Reactor Analysis)

2D Drawing of Magnet System

NFRI국가핵융합연구소 National Fusion Research Institute

CICC Dimensions and Trial Fabrication

CICC Parameter

Parameter	TF HF	TF LF	CS	PF1-4	PF5-6
 Cable pattern No. of SC strands No. of Copper strands Spiral Dimension (mm) 	(3SC)x4x5x6x5 + Helical Spiral 1800 - ID 7 / OD 12	(((2SC+2Cu)x5)x6+7 Cu)x6 + Central Spiral 360 432 ID 7 / OD 9	(2SC+1Cu) x3x4x4x6 No Cooling Spiral 576 288 -	(2SC+1Cu)x3x4x4 48 24 ID 7 /	x5+Central Spiral 0 0 OD 9
Void Fraction (%)	27.1	26.0	36.6 32.5		.5
Strand Type	High Jc (> 2600 A/ 0.82 mm (~450 ton	mm2) Nb3Sn Strand diameter + ~280 ton)	Sn Strand ITER type (Jc ~ 1000 A/mm2) Nb3Sn Strand N 0.82 mm diameter n) (~102 ton + ~90 ton) (NbTi Strand 0.82 mm diameter (~90 ton)
■ Cu/non-Cu of Strand	1.0				
Insulation	1.6 mm (including Voltage Tap) (0.1 mm Kapton 400% + 0.3 mm S glass 400%)		2.0 mm (including Voltage Tap) (0.1 mm Kapton 400% + 0.4 mm S glass 400%)		
Jacket Thickness	5.0 mm				
 Twist Pitch (mm) 1st stage 2nd stage 3rd stage 4th stage 5th stage 	$80 \pm 5 \\ 140 \pm 10 \\ 190 \pm 10 \\ 245 \pm 15 \\ 415 \pm 20$	80 ± 5 140 ± 10 190 ± 10 300 ± 15 -	27 ± 5 45 ± 10 85 ± 10 150 ± 15 385 ± 20	35 = 75 ± 135 = 285 = 410 =	= 5 10 = 10 = 15 = 20
 Wrapping Tape Sub-cable wrap thickness Sub-cable wrap width Cable wrap thickness Final wrap width 	0.08 mm, 40% coverage 15 mm 0.4 mm, 60% coverage 7 mm				

Overview of TF Coil

- Selected for Detailed Study (Maintenance Space = 2.5 m)
- Considering Vertical Maintenance Scheme
- R = 6.8 m, a = 2.1 m
- Small CICC Coil : 18 x 10 turns Large CICC Coil : 12 x 5 turns (Total : 240 turns)
- Magnetic Field at Plasma Center : ~7.4 Tesla (Bpeak ~ 16 Tesla, T-margin > 1 K)
- Nominal Current : 65.52 kA
- Conductor Length :
 - LQP = ~900 m (Quadruple Pancake) (Total : ~450 ton)
 - SDP = ~930 m (Double Pancake) (Total : ~280 ton)

Inter-coil Joint Scheme of Magnet

I ITER CS Inter-coil Joint Scheme used

• Joint Resistance ~0.2 n-ohm/joint

3D Modeling of TF Magnet

3D Modeling of TF Assembly

TF Coil Structure

Overview of CS Coils

- Number of Turns : 14 (Total SC strand weight : ~102 tons)
- Number of Layers : CS1, CS2, CS3 & CS4 : 24 layers
- Magnetic Field at Center : ~11.8 T (Bpeak < 12.194 T, Half Flux Swing ~ 85 Wb)
- Conductor Unit Length : 885 m (CS1, CS2, CS3 & CS4 : UL x 4)
- Gap Between Coils : 104 mm
- Magnet Center Position : (1638, 700), (1638, 2100), (1638, 3500), (1638, 4900)
- Nominal Current : 42 kA (Current can be increased)
- Temperature Margin ~ 1.3 K

3D Modeling of CS Coils

Stability Analysis of TF and CS CICC

- Gandalf Code has been used for the estimation.
- Assumption & Result
 - Gaussian shape DC heat pulse was applied for 10 ms at the center of the CICC's.
 - The nominal strain of -0.5% was assumed for the superconducting wires.
 - The field, temperature and strain dependence of the critical current density was estimated by the scaling law based on strong-coupling theory.
 - The percentage perforation of the separation perimeter between the bundle and hole He channels was set to 0.5 and the inlet pressure of 0.5 MPa case was studied.
 - For the HF CICC, the energy margin at an operation current of 65.52 kA is well above 500 mJ/ccst whether the heating zone is 2 or 20 m, even for the stagnant flow condition.
 - But for the LF conductor, the energy margin at the operation current is above 500 mJ/ccst, when there is a He mass flow of 5 g/sec at the flow path inlet. The energy margin was increased almost twice as the He mass flow increased to 15 g/sec,

Overview of PF Coils

- Number of Turns : 8 turns for PF1~4, 12 for PF5, and 2 for PF6
- Number of Layers : 20 layers for PF1~4, 36 for PF5 and 4 for PF6
- Nominal Current : 36, 50, 50, 44, 37, 28 kA for PF1 to 6, respectively.
- Conductor Unit Length : 620, 755, 890 and 1030 m for PF1~4

980 & 1010 m for PF5 and 770 m for PF6

 Coil Center Position : (2980, 8310), (3660, 8310), (4340, 8590) - PF1~3 (5020, 8750), (12762 & 13158, 7500), (14880, 2950) - PF4~6

■ Temperature Margin > 1.5 K

In-Vessel Components

■ In-Vessel Component Segmentation 22.5°

Concept of Vertical Maintenance [I]

Vertical maintenance of all in-vessel components

Concept of Vertical Maintenance [II]

국가핵융합연구소

Blanket Module Configuration (water cooling)

Neutron Wall Loading Distribution

Fusion power = 2200 MW

Poloidal Angle (degree)

3D Global TBR (Tritium Breeding Ratio)

MCNP model – tokamak 45° sector

MCNP Calculation with the help of MCAM developed by Chinese FDS team

Breeder Pebble	Multiplier Pebble	Global TBR
Li ₄ SiO ₄	Be	> 1.20
Li ₄ SiO ₄ Be ₁₂ Ti		< 1.00 (so far)
Li ₄ SiO ₄ + Be ₁₂ Ti	~ 1.00 (so far)	

Nuclear Heating in TF Coils

450 mm thick B₄C or 600 mm thick 2% Borated SS could reduce the nuclear heating in 16 TF coils below 10 kW.

Heat generation vs. Pebble Layers (9 layers)

Temperature distribution of blanket module (coolant speed = 4 m/s)

< Water Temperature >

< Blanket Temperature >

Heat generation vs. Pebble Layers (9 layers)

Temperature distribution of blanket module (coolant speed = 10 m/s)

< Water Temperature >

< Blanket Temperature >

Heat generation vs. Pebble Layers (10 layers)

Temperature distribution of blanket module (coolant speed = 4 m/s)

< Water Temperature >

< Blanket Temperature >

Heat generation vs. Pebble Layers (10 layers)

Temperature distribution of blanket module (coolant speed = 10 m/s)

< Water Temperature >

< Blanket Temperature >

Divertor Peak Heat Flux & Distibution

Convection + radiation heat load (for 2.2 GW of fusion power)

- Core radiation fraction = 40%
- λq = 1.5~2.5 mm
- flux expansion = 4.3

Divertor Radiation ~87% is required to meet Peak Heat flux = 10 MW/m² ($\lambda q = 1.5 \text{ mm}$)

Peak Heat Flux vs. Divertor Radiation Fraction

Heat Flux Distribution at Outboard Divertor Target $(f_{rad_div} = 0.87)$

Concept of Divertor

- Each divertor module is consisted of a central part, an inboard target, and an outboard target.
- High Heat Flux (HHF) unit:
 - Tungsten mono-blocks

Detail View of HHF Units

Tungsten

Monoblocks

Monoblock

support

RAFM

Cooling Tubes

- RAFM cooling tube
- Vanadium interlayer

RAFM

Backplate

Preliminary Thermo-hydraulic Analyses

Thermo-hydraulic Analyses for the HHF unit

 Peak temperature of tungsten ~ 2000 °C

- Coolant temperature: 290~315 °C (15 MPa)
 - → meet a PWR-like coolant conditions

Radial Build of K-DEMO [unit : mm]

Details of Radial Build of K-DEMO

	COMP BUILD, Z=0 (in)	(mm)	(in)	(mm)	TOTAL (mm)
	Machine Center				0
	Solenoid Center	1390	54.724		1390
	ground wrap	10	0.394		
CS	Winding pack thickness	476	18.740		
	ground wrap	10	0.394	496	1886
	Gap	10	0.394		
	Tie Plate / lead support	114	4.488		
	OH TPT*	6	0.236		
	TF TPT	9	0.354		
	Min OH/TF Gap	10	0.394		
	OH/TF deflection	10	0.394		
	Wedged coil asmbly fit up	5	0.197		
	Bucking Cylinder	0	0.000	164	2050
	Ext structure	505	19.882		
	Clearance	5	0.197		
	ground wrap	5	0.197		
	OC Winding pack thickness	360	14.173		
	ground wrap	5	0.197		
INBD IF	ground wrap	5	0.197		
	IC Winding pack thickness	200	7.874		
	ground wrap	5	0.197		
	Clearance	5	0.197		
	Ext structure	75	2.953	1070	3220
	TF winding tolerance	10	0.394		
	Wedged coil assembly fit up	10	0.394		
	Trapezoidal Effect	30	1.181		
Thermal Insul	TF TPT	10	0.394		
	cold wall / thermal insul	120	4.724		
	Min VV/TI Gap	10	0.394		
	VV TPT	10	0.394	200	3420
	VV shell thickness	40	1.575		
Inboard VV	Shell gap	50	1.969		
	VV shell thickness	40	1.575	130	3550
	VV TPT	5	0.197		
	EM load displacement	9	0.354		
	Backbone TPT	5	0.197		
D l. d	Min VV/Backbone Gap	5	0.197		
Backbone	Thermal Shield	5	0.197		
	Backbone shield structure	100	3.937		
	Gap+TPT	5	0.197		
	Diagnostic mounting space	25	0.984	159	3709

	COMP BUILD, Z=0 (in)	(mm)	(in)	(mm)	TOTAL (mm)
	Manifold space	217	8.543		
Disalest (Child	Back wall-Shield	120	4.724		
Blanket/Shid	tolerances	6	0.236		
	Breading Zone	517	20 354		
FW/	FW	31	1 220	891	
	Plasma SO	100	3 937	0.01	4600
	Placma minor radii	2100	0.557		4700
Plasma R0		2100	02.077		4700
i lusiliu ito					6800
	Plasma minor radii	2100	82.677		8900
	Plasma SO	100	3.937		9000
FW/Blanket	FW	31	1.220		
	Blanket - segment 1	517	20.354		
	Passive Plates	10	0.394		
	attachment space	50	1.969	608	9608
Shield	Skeleton Ring Shield	200	7.874	300	9808
	Manifold space	392	15.433	220	10200
	Thermal Shield	10	0.394		
	EM load displacement	10	0.394		
Space	Shield / Bkt TPT	10	0.394		
	VV Shield Gap	2460	96.850		
	VV TPT	10	0 394	2500	12700
	W shell the	40	1 5 7 5	2500	12700
Outboard VV	Chall gap	200	11 011		
		300	1.011	200	12000
		40	1.575	500	13060
	cold wall / thermal insul	120	4./24		
Thermal Insul	TF/VV Gap	290	11.417		
	VV TPT	10	0.394	420	10510
	Ext structure	<u> </u>	2 9 5 3	430	13510
	winding tolerance	5	0.197		
	ground wrap	5	0.197		
	IC Winding pack thk	200	7.874		
	ground wrap	5	0.197		
OUTED IF	Space for layer transition	143	5.630		
	OC Winding pack the	360	0.197		
	ground wrap	5	0.197		
	winding tolerance	5	0.197		
i t	Ext.structure	210	8 268	1018	14528

*TPT : True Position Tolerance

K-DEMO Conceptual Study & CDA Schedule

Target Date for K-DEMO Construction : End of 2037

DEMO Core Technology Development Plan

ER

Carlos I

DEMO Core Technology Development Plan

Development of Core Technology

- 3 Major Research Fields, 7 Core Technologies, 18 Detail Technologies and 6 Major Research Facilities
- Through the complete technical planning process with the full participation of experts from all fields covering fusion, fission, physics, computing, mechanics, material, electrics, electronics, and so on.

K-DEMO 3 Major Research Fields	K-DEMO 7 Core Technologies	Major Research Facilities
Design Basis Technology	Tokamak Core Plasma Technology	
	Reactor System Integration Technology	Extreme Scale Simulation Center
	Safety and Licensing Technology	
Material Basis Technology	Fusion Materials Technology	Fusion Materials Development Center
	SC Magnet Technology	 Fusion Neutron Irradiation Test Facility SC Conductor Test Facility
Machine and System Engineering Basis Technology	H&CD and Diagnostics Technology	Blanket Test Facility
	Heat Retrieval System Technology	PMI Test Facility

K-DEMO Design & Core Technology Development

Major Facilities

Nation-wide DEMO R&D Center Planning

Chonbuk Province

Extreme Environment Material R&D Hub - Fusion Reactor Materials R&D

Advanced Magnetic Field Center - Superconductor Test Facility (SUCCEX)

High Enthalpy Plasma Application R&D Center

- Plasma-Material Interaction Test Facility etc.

PMI Test Facility (Chonbuk Province)

- 400kW High-Temperature Plasma Test Facility
 - Upgrade Plasma Facility for PMI Test
 - Additional, Blanket Test Facility

MAGNUM-PSI (Cf.)

Superconductor Test(SUCCEX) Facility

- SUCCEX : SUperConducting Conductor EXperiment
- Split pair solenoid magnet system
- Inner bore size : ~1 m
- B_{peak} ~ 16.39 Tesla, B_{center} ~ 15.33 Tesla
- Maximum Helium flow channel length : < 100 m
 - One magnet of the split pair consists of three coil (IC, MC, OC) and the maximum of Helium channel length should be maintained below 100 m
 - Every double pancake of each coil will have Helium inlet and outlet
 - Each coil have a number of inter magnet joints because of the maximum fabrication capability in the length of CICC

Test Mode

- Semi-circle type conductor sample test mode
 - $\checkmark~$ U-shape sample with the bottom radius of 0.5 m
 - ✓ DEMO TF conductor will have a rectangular cross-section to reduce the strain effect & will have capability of a minimum bending radius of 0.5 m
 - \checkmark No joint : no question regarding voltage arising from the joint
 - ✓ There are enough distance for the voltage relaxation from the sample terminal to voltage taps
- Sultan like sample test mode
 - ✓ For the case of CS conductor, the size of the is expected to be a range of 50 mm. And it is not easy to make the U-shape sample because of the minimum bending radius
 - $\checkmark\,$ Also the facility could support the joint technology development

Conceptual View of SUCCEX

Conductor Parameter of SUCCEX Magnets

- IC (Inner Coil) CICC : (3SC)x4x5x6[360 SC strand], VF = 27.62%
- MC (Middle Coil) CICC : (2SC+1Cu)x3x4x6[144 SC strand], VF = 26.96%
- OC (Outer Coil) CICC : (1SC+2Cu)x3x4x6[72 SC strand], VF = 26.96%
- Strand : High Jc (> 2600A/mm2) Nb3Sn (total ~ 6.8 ton)
- Twist Pitch : 50 mm 110 mm 170 mm 290 mm
- No Sub-Cable Wrapping

SUCCEX Magnet Cross-Section (Upper Coil)

Magnetic Field & Stress of SUCCEX Magnets

Stability Analysis of SUCCEX Magnets

KOMAC Site (Gyeong-ju)

KTX Station

To Seoul ~2 Hour

KOMAC Phase-2 Site 650m(L) X 400m(W)

KOMAC Site 450m(L) X 400m(W)

> Seoul-Busan Expressway

Neutron Energy Spectrum in KOMAC

Fusion Neutron similar Spectrum by Pulse-type Proton beam on Be-target (>1dpa/y)

(Ref.) Institute for Materials Research, KIT I A. Moslang

Neutron Energy Spectrum in KOMAC

IFMIF(International Fusion Material Irradiation Facility)

Summary

- The conceptual study on the Korean fusion demonstration reactor (K-DEMO) has been started in 2012, based on the National Fusion Roadmap released in 2005 and Korean Fusion Energy Development Promotion Law (FEDPL) enacted in 2007.
- After the thorough 0-D system analysis, the major radius and minor radius of K-DEMO are chosen to be 6.8 m and 2.1 m, respectively
- For matching the high frequency ECCD, the designed K-DEMO TF magnet system provides the magnetic field at the plasma center above 7 T with a peak field of ~16 T by using high performance Nb₃Sn-based superconducting strand.
- For a high availability operation, K-DEMO incorporates a vertical maintenance design.
- Pressurized water is the most prominent choice for the main coolant of K-DEMO when considering balance of plant development details.
- A global TBR greater than 1 is achieved using a water cooled ceramic breeder blanket system.
- Considering the plasma performance and the peak heat flux in the divertor system, a double-null divertor system becomes the reference choice of K-DEMO.

