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Abstract
In regression analyses for deriving scaling laws in the context of fusion studies, usually standard regression methods have been applied, of which
ordinary least squares (OLS) is the most popular. However, concerns have been raised with respect to several assumptions underlying OLS in its
application to fusion data. More sophisticated statistical techniques are available, but they are hardly known or used in the fusion community
and, moreover, the predictions by scaling laws may vary significantly depending on the particular regression method used. Given the ubiquity
and importance of scaling laws in fusion research, it is natural to approach their estimation with dedicated statistical tools. We have developed a
new regression method for this purpose, which we call geodesic least squares regression (GLS), that is robust in the presence of significant
uncertainty on both the data and the regression model [1,2]. The method is based on probabilistic modeling of all variables involved in the
scaling expression, using adequate probability distributions and a natural similarity measure between them (geodesic distance). In this work we
revisit the scaling law for the power threshold for the L-to-H transition in tokamaks, using data from the multi-machine ITPA database. The
prediction of the power threshold for ITER is higher than that obtained with OLS on the same database, suggesting caution in interpreting earlier
predictions by established scaling laws.

Motivation
• In fusion science, regression analysis is used:

 As an aid to build and validate theoretical models from data to find parametric dependencies
 As a statistical tool to formulate scaling laws for the purpose of extrapolation

• Ordinary least squares regression (OLS) is the workhorse
• Often, multiple assumptions underlying OLS are not fulfilled [3,4,5]
• There may be various reasons:

 Considerable measurement uncertainty: statistical and systematic
 Uncertainty on response (dependent, 𝑦) and predictor (independent, 𝑥𝑗) variables

 Model uncertainty: linear, power law, semi-empirical, …

Power law: 𝑦 = 𝑏0𝑥1
𝑏1𝑥2

𝑏2 …𝑥𝑚
𝑏𝑚

 Heterogeneous data and error bars, correlations, non-Gaussian probability distributions
 Atypical observations (outliers)
 Near-collinearity of predictor variables
 Data transformations, e.g.

ln 𝑦 = ln 𝑏0 + 𝑏1 ln 𝑥1 +…+ 𝑏𝑚 ln 𝑥𝑚

• Inferior regression analysis counteracts other efforts!
• A flexible, robust and user-friendly regression tool is needed

Geodesic least squares regression (GLS)

OLS GLS
Formulate model with parameters  𝜃 = 𝜃1, … , 𝜃𝑝

T
: 

𝑦 = 𝑓 𝑥1, … , 𝑥𝑚
 𝜃

Take 𝑛 measurements 𝑦𝑖 and  𝑥𝑖 = 𝑥𝑖1, … , 𝑥𝑖𝑚
T

Minimize error

Least squares estimation
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Maximum likelihood estimation (MLE)
(e.g. Gaussian likelihood)
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Modeled distribution
(e.g. Gaussian)

𝑝mod 𝑦  𝑥1, … ,  𝑥𝑛,  𝜃 =
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𝜎mod includes uncertainty on 𝑦 and 𝑓  𝑥𝑖
 𝜃

Zero error 
on the 
𝑥𝑖𝑗!

Includes 
errors on 
the 𝑥𝑖𝑗!

Observed distribution
(e.g. Gaussian)
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1

2𝜋𝜎obs
exp −

1

2
 

𝑖=1

𝑛
𝑦 − 𝑦𝑖

2

𝜎obs
2

𝜎obs to be estimated from the data

Minimize 
distanceor

Which distance measure between 
probability distributions?

Information geometry

• Geometric approach to probability theory [6]
• A family of probability density functions (PDFs)

forms a metric space,
or manifold

• Fisher information is the
metric tensor

• Rao geodesic distance (GD)
is the shortest distance
between points (PDFs)

• 𝑝1(𝑥|𝜇1, 𝜎1) 𝑝2(𝑥|𝜇2, 𝜎2)

• GD 𝑝1, 𝑝2 = 2 2tanh−1𝛿,

𝛿 =
𝜇1−𝜇2
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• The pseudosphere (tractroid) is a model
for the manifold of univariate Gaussian
distributions, respecting the
true geometry (𝜇 in red, 𝜎 in blue)

Intuitively, the Gaussians
𝑝3 𝑥 4, 4.02 and 𝑝4 𝑥 16, 5.02

are closer (more overlap) than
𝑝1 𝑥 4, 1.22 and 𝑝2 𝑥 16, 1.52 ,
although the respective means are
the same. The reason is that 𝜎
does not behave like a Euclidean
coordinate.
Indeed, GD 𝑝3, 𝑝4 = 2.4 < GD 𝑝1, 𝑝2 = 5.3, whereas with the
Euclidean distance ED 𝑝3, 𝑝4 = 12.04 > ED 𝑝1, 𝑝2 =12.00. The
distributions are mapped on the pseudosphere on the left.

Fisher information

metric

𝑔𝑖𝑗
 𝜃 = −𝔼

𝜕2 ln 𝑝  𝑥  𝜃

𝜕𝜃𝑖𝜕𝜃𝑗

Geodesics
and

geodesic distance 
(GD)

Manifold with
coordinates 

𝜃1, … , 𝜃𝑝

Example: Gaussian manifold

Numerical simulations

• Power law model with Gaussian noise (40 %):
0 ≤ 𝜉𝑖 ≤ 60, 𝑖 = 1,… , 10

𝜂𝑖 = 𝑏0𝜉𝑖
𝑏1 , 𝑏0 = 0.80, 𝑏1= 1.40

• Transform to logarithmic space

2. Logarithmic transformation

• Linear model with a single predictor and Gaussian noise:
0 ≤ 𝜉𝑖 ≤ 50, 𝑖 = 1,… , 10
𝜂𝑖 = 𝑏𝜉𝑖 , 𝑏 = 3.00
𝜎𝑥 = 0.5, 𝜎𝑦 = 2.0

 
𝑥𝑖 = 𝜉𝑖 + 𝜖𝑥,𝑖 , 𝜖𝑥,𝑖 ∼ 𝒩 0, 𝜎𝑥

2

𝑦𝑖 = 𝜂𝑖 + 𝜖𝑦,𝑖 , 𝜖𝑦,𝑖 ∼ 𝒩 0, 𝜎𝑦
2

• Introduce an outlier: 𝑦𝑖 → 2 × 𝑦𝑖 , 𝑖 ∈ 8, 10 uniformly
• 100 Monte Carlo runs
• GLS captures outlier by estimating an average

 𝜎obs = 4.36 (±0.32) > 𝜎mod = 𝜎𝑦
2 + 𝑏2𝜎𝑥

2 = 2.5

1. Atypical observations (outliers) 𝑝mod 𝑦 𝑥1, … , 𝑥10, 𝑏 =
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On the right is the pseudophere with superimposed the
estimates for the model with outlier (for one specific data set

in the simulation). The points  𝑏𝑥 signify the modeled
distributions (𝜎mod = 2.5, outlier at  𝑏𝑥10). 𝑦 denotes the

observed distributions (  𝜎obs = 4.36) and  𝑦 are the same but

shifted to 𝜎mod = 2.5. The geodesic Geo1 (GD = 5.13) is

indeed shorter than Geo2 (GD = 5.85).

Logarithmic space Original space

• Comparison with
 OLS
 Total least squares (TLS)

 Maximum likelihood estimation (MLE)
 Robust (iteratively re-weighted) least squares (ROB)

Power threshold scaling

• Statistical analysis of established power threshold
scaling has revealed several flawed assumptions [3]:
 Negligible uncertainty on predictor variables

compared to response variable
 Equal relative error on variables in all devices

and experiments
 Normal distribution of logarithmic quantities

2. Nonlinear regression on logarithmic scale

• Gaussian approximation of modeled
distribution:

• GLS maintains predictions, OLS changes
• GLS better captures the pattern:

e.g. C-Mod @ 𝐵t ≈ 5.2 T, 𝑆 ≈ 7.0 m2

• Classic power law:

1. Linear regression on logarithmic scale

• ITPA H-mode threshold database [7],
subset IAEA02 [8]: 645 measurements from 7 devices

• Logarithmic variables assumed Gaussian: single
standard deviation = relative error from database

• One 𝜎obs for each device: 21% → 48%

• Power threshold estimates are higher with GLS

𝑃thr = 𝑏0  𝑛e
𝑏1𝐵t

𝑏2𝑆𝑏3

⟹ ln𝑃thr = ln 𝑏0 + 𝑏1 ln  𝑛e + 𝑏2 ln 𝐵t + 𝑏3 ln 𝑆

Original space

Logarithmic space

• Regression model uncertainty:
 Additional predictor variables [4]
 Non-power law forms [5]
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Calculate average for each device

Conclusion
• Regression for fusion scaling laws requires dedicated tools
• Regression methodology needs to be flexible and robust
• Geodesic least squares regression fulfils these

requirements
• GLS is user-friendly and offers a unified solution to a

variety of regression problems
• Power threshold estimates are higher with GLS than OLS
• Future development: error bars on GLS estimates and

predictions
• GLS will be implemented in a public software package

References
[1] G. Verdoolaege et al., Plasma Phys. Control. 

Fusion 54, 124006, 2012
[2] G. Verdoolaege et al., Rev. Sci. Instrum. 85, 

11E810, 2014
[3] D.C. McDonald et al., Plasma Phys. Control. 

Fusion 48, A439, 2006
[4] A. Murari et al., Nucl. Fusion 52, 063016, 2012
[5] A. Murari et al., Nucl. Fusion 53, 043001, 2013
[6] S. Amari and H. Nagaoka, Methods of 

Information Geometry, AMS, New York, 2000
[7] Y.R. Martin et al., J. Phys.: Conf. Ser. 123, 

012033, 2008
[8] J.A. Snipes et al., Fusion Energy 2002 (Proc. 19th

Int. Conf. Lyon), IAEA, Vienna, CT/P-04

𝜎mod
2 = 𝜎𝑃thr
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Parameter GLS OLS MLE

𝑏0 0.048 0.051 0.033

𝑏1 𝟎. 𝟗𝟔 0.85 1.29

𝑏2 𝟎. 𝟓𝟗 0.70 0.37

𝑏3 𝟏. 𝟎𝟓 1.00 1.24

𝑃thr,0.5 𝟔𝟒 𝟔𝟐 81

CI 1𝜎 – ±5 –

CI 95% – ±10 –

𝑃thr,1.0 𝟏𝟐𝟒 𝟏𝟏𝟏 198

CI 1𝜎 – ±12 –

CI 95% – ±23 –

Parameter GLS OLS MLE TLS ROB

𝑏0 0.053 0.059 0.053 0.027 0.055

𝑏1 𝟎. 𝟗𝟑 0.73 1.22 0.99 0.74

𝑏2 𝟎. 𝟔𝟒 0.71 0.40 0.86 0.72

𝑏3 𝟏. 𝟎𝟐 0.92 1.15 1.15 0.94

𝑃thr,0.5 𝟔𝟐 𝟒𝟖 79 101 50

CI 1𝜎 – +3.7 / −3.5 – – –

CI 95% – +7.6 / −6.6 – – –

𝑃thr,1.0 𝟏𝟏𝟖 𝟖𝟎 183 200 83

CI 1𝜎 – +7.4 / −6.8 – – –

CI 95% – +15 / −12 – – –

Original GLS OLS MLE TLS ROB

𝑏 = 3.00
𝟑. 𝟎𝟑𝟏
±0.035

3.528
±0.038

3.696
±0.049

4.61
±0.11

𝟐. 𝟗𝟗𝟐
±0.041

Original GLS OLS MLE TLS ROB

𝑏0 = 0.80
𝟎. 𝟗𝟒
±0.47

2.2
±2.3

1.75
±0.58

𝟎. 𝟗𝟗
±0.70

2.72
±0.77

𝑏1 = 1.40
𝟏. 𝟑𝟗
±0.11

1.19
±0.16

1.21
±0.10

𝟏. 𝟒𝟏
±0.14

1.17
±0.11


