

FACULTY OF ENGINEERING AND ARCHITECTURE

A New Methodology for Scaling Laws with Arbitrary Error Distributions: **Case Study for the H-Mode Power Threshold**

G. Verdoolaege^{1,2} and J.-M. Noterdaeme^{1,3}

¹Department of Applied Physics, Ghent University, B-9000 Ghent, Belgium

²Laboratoire de Physique des Plasmas de l'ERM – Laboratorium voor Plasmafysica van de KMS (LPP–ERM/KMS), Ecole Royale Militaire – Koninklijke Militaire School, B-1000 Brussels, Belgium ³Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching, Germany

Abstract

In regression analyses for deriving scaling laws in the context of fusion studies, usually standard regression methods have been applied, of which ordinary least squares (OLS) is the most popular. However, concerns have been raised with respect to several assumptions underlying OLS in its application to fusion data. More sophisticated statistical techniques are available, but they are hardly known or used in the fusion community and, moreover, the predictions by scaling laws may vary significantly depending on the particular regression method used. Given the ubiquity and importance of scaling laws in fusion research, it is natural to approach their estimation with dedicated statistical tools. We have developed a new regression method for this purpose, which we call geodesic least squares regression (GLS), that is robust in the presence of significant uncertainty on both the data and the regression model [1,2]. The method is based on probabilistic modeling of all variables involved in the scaling expression, using adequate probability distributions and a natural similarity measure between them (geodesic distance). In this work we revisit the scaling law for the power threshold for the L-to-H transition in tokamaks, using data from the multi-machine ITPA database. The prediction of the power threshold for ITER is higher than that obtained with OLS on the same database, suggesting caution in interpreting earlier predictions by established scaling laws.

Numerical simulations

ERM - KMS

 $p_{\text{mod}}(y|x_1, \dots, x_{10}, b)$

3.031

+0.035

b = 3.00

1. Atypical observations (outliers)

Linear model with a single predictor and Gaussian noise: $0 \le \xi_i \le 50, \quad i = 1, \dots, 10$ $(x_i = \xi_i + \epsilon_{x,i}, \epsilon_{x,i} \sim \mathcal{N}(0, \sigma_x^2))$ b = 3.00 $\eta_i = b\xi_i,$ $(y_i = \eta_i + \epsilon_{y,i}, \epsilon_{y,i} \sim \mathcal{N}(0, \sigma_y^2))$ $\sigma_x = 0.5, \qquad \sigma_y = 2.0$

Motivation

- In fusion science, regression analysis is used:
 - As an aid to build and validate theoretical models from data to find **parametric dependencies**
 - As a statistical tool to formulate **scaling laws** for the purpose of **extrapolation**
- **Ordinary least squares regression (OLS)** is the workhorse
- Often, multiple assumptions underlying OLS are not fulfilled [3,4,5]
- There may be various reasons:
 - Considerable measurement uncertainty: statistical and systematic
 - Uncertainty on response (dependent, y) and predictor (independent, x_i) variables
 - Model uncertainty: linear, power law, semi-empirical, ...

 $y = b_0 x_1^{b_1} x_2^{b_2} \dots x_m^{b_m}$ Power law:

- Heterogeneous data and error bars, correlations, non-Gaussian probability distributions
- Atypical observations (outliers)
- Near-collinearity of predictor variables
- Data transformations, e.g.

 $\ln y = \ln b_0 + b_1 \ln x_1 + \dots + b_m \ln x_m$

- Inferior regression analysis counteracts other efforts!
- A flexible, robust and user-friendly regression tool is needed

Geodesic least squares regression (GLS)

Formulate model with parameters $\vec{\theta} = [\theta_1, ..., \theta_p]^{1}$:

- Introduce an outlier: $y_i \rightarrow 2 \times y_i$, $i \in [8, 10]$ uniformly
- 100 Monte Carlo runs
- GLS captures outlier by estimating an average

• Power law model with Gaussian noise (40 %):

 $0 \le \xi_i \le 60$,

$$\sigma_{\text{obs}} = 4.36 \ (\pm 0.32) > \sigma_{\text{mod}} = \sqrt{\sigma_y^2 + b^2 \sigma_x^2} = 2.5$$

- Comparison with
- OLS
- Maximum likelihood estimation (MLE)
- Total least squares (TLS)
 Robust (iteratively re-weighted) least squares (ROB)

2. Logarithmic transformation

• Transform to logarithmic space

Regression on the pseudosphere

On the right is the pseudophere with superimposed the estimates for the model with outlier (for one specific data set in the simulation). The points $\hat{b}x$ signify the modeled distributions ($\sigma_{mod} = 2.5$, outlier at $\hat{b}x_{10}$). y denotes the observed distributions ($\hat{\sigma}_{obs} = 4.36$) and \tilde{y} are the same but shifted to σ_{mod} = 2.5. The geodesic Geo₁ (GD = 5.13) is indeed shorter than Geo_2 (GD = 5.85).

Minimize Rao GD

Estimate $b, \sigma_{
m obs}$

TLS

4.61

 ± 0.11

3.696

+0.049

ROB

2.992

 ± 0.041

OLS ROB GLS MLE TLS Original 2.72 1.75 0.99 0.94 2.2 $b_0 = 0.80$ ± 2.3 ± 0.58 ± 0.70 ± 0.77 +0.471.17 1.19 1.21 $b_1 = 1.40$ ± 0.11 ± 0.16 ± 0.14 ± 0.11 ± 0.10

3.528

 ± 0.038

 $\eta_i = b_0 \xi_i^{b_1}, \quad b_0 = 0.80, \quad b_1 = 1.40$

i = 1, ..., 10

Power threshold scaling

- Statistical analysis of established power threshold scaling has revealed several **flawed assumptions** [3]:
 - Negligible uncertainty on predictor variables compared to response variable
 - Equal relative error on variables in all devices and experiments
 - Normal distribution of logarithmic quantities

1. Linear regression on logarithmic scale

- Classic power law: $P_{\rm thr} = b_0 \bar{n}_{\rm e}^{b_1} B_{\rm t}^{b_2} S^{b_3}$
 - $\ln P_{\rm thr} = \ln b_0 + b_1 \ln \bar{n}_{\rm e} + b_2 \ln B_{\rm t} + b_3 \ln S$ \Rightarrow
- ITPA H-mode threshold database [7], subset IAEA02 [8]: 645 measurements from 7 devices
- Logarithmic variables assumed Gaussian: single standard deviation = relative error from database
- One σ_{obs} for each device: 21% \rightarrow 48%
- Power threshold estimates are higher with GLS
- 2. Nonlinear regression on logarithmic scale Gaussian approximation of modeled distribution: $\mu_{\rm mod} = b_0 \bar{n}_{\rm e}^{b_1} B_{\rm t}^{b_2} S^{b_3}$

Calculate average for each devic $\sigma_{\rm mod}^2 = \sigma_P^2_{\rm thr}$

- Regression **model uncertainty**:
 - Additional predictor variables [4]
 - Non-power law forms [5]

Parameter	GLS	OLS	MLE	TLS	ROB	
b_0	0.053	0.059	0.053	0.027	0.055	
b_1	0.93	0.73	1.22	0.99	0.74	
b_2	0.64	0.71	0.40	0.86	0.72	
b_3	1.02	0.92	1.15	1.15	0.94	
P _{thr,0.5}	62	48	79	101	50	
Cl 1σ	-	+3.7 / -3.5	-	-	-	
CI 95%	-	+7.6 / -6.6	-	-	-	
$P_{\text{thr,1.0}}$	118	80	183	200	83	
Cl 1σ	-	+7.4 / -6.8	-	-	-	
CI 95%	-	+15 / -12	-	-	-	

	Parameter	GLS	OLS	MLE			
	b_0	0.048	0.051	0.033	4- OLS linear 3- OLS nonlinear GLS linear		
	b_1	0.96	0.85	1.29	E 2 -GLS nonlinear		
e	b_2	0.59	0.70	0.37			
	b_3	1.05	1.00	1.24	Logarithmic space		
	P _{thr,0.5}	64	62	81			
	$C 1\sigma$	_	+5	_	OLS linear		

• **GLS maintains predictions**, OLS changes • GLS better captures the pattern: e.g. C-Mod @ $B_{t} \approx 5.2 \text{ T}, S \approx 7.0 \text{ m}^{2}$

Conclusion

- Regression for fusion scaling laws requires **dedicated tools**
- Regression methodology needs to be **flexible** and **robust**
- Geodesic least squares regression fulfils these requirements
- GLS is user-friendly and offers a unified solution to a variety of regression problems
- Power threshold estimates are higher with GLS than OLS
- Future development: error bars on GLS estimates and predictions
- GLS will be implemented in a **public software package**

References

[1] G. Verdoolaege et al., Plasma Phys. Control. Fusion **54,** 124006, 2012 [2] G. Verdoolaege et al., Rev. Sci. Instrum. 85, 11E810, 2014 [3] D.C. McDonald *et al.*, Plasma Phys. Control. Fusion **48**, A439, 2006 [4] A. Murari *et al.*, Nucl. Fusion **52**, 063016, 2012 [5] A. Murari *et al.*, Nucl. Fusion **53**, 043001, 2013 [6] S. Amari and H. Nagaoka, Methods of Information Geometry, AMS, New York, 2000 [7] Y.R. Martin et al., J. Phys.: Conf. Ser. 123, 012033, 2008 [8] J.A. Snipes *et al.*, Fusion Energy 2002 (Proc. 19th Int. Conf. Lyon), IAEA, Vienna, CT/P-04