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Aims and Strategy for Port Plug Neutronics Analysis 

Parametric study for SDDR – shielding improvements for the Generic UPP 

Aims  

- Provide neutronics support for the ITER Equatorial and Upper Port Plug design 

development; 

- Check the current design to satisfy the ITER radiation requirements; 

- Find design solutions for possible shielding improvements in accordance with ALARA 

principle – for the Shut-Down Dose Rate (SDDR) 

Strategy  

- Understanding the physical phenomena of the problem (radiation transport and activation) 
– usually steel/water plugs with gaps.  

- Choose the best available neutronics model of ITER (B-lite ver. 2 & 3) and modeling 

approximations (material homogenization, boundary conditions, impurities): 

- Examine basics principles on Local models; 

- Parametric analysis of the model characteristics in Local model; 

- Optimization of the model geometry / material for  Shut-Down Dose Rate (SDDR) as a target 

parameter; 

- Integration of the Local MCNP model into the General ITER model (B-lite). 

SDDR modeling assumptions: 
• Rigorous 2 Step mesh (R2Smesh) method: data 

flow interface between MCNP and FISPACT; 

• Direct 1-Step (D1S) method : couples the decay 

gammas emission and propagation with the neutron 

transport in the same MCNP run 

• SA2 safety scenario for neutron irradiation 

• Dose rate at 1e6 s after the ITER shutdown 

• ICRP74 photon-to-dose conversion factors 

Diagnostics Equatorial Port Plug (EPP) 

 Influence to SDDR inside the UPP interspace  

Parameter of UPP Stricture / Environment (µSv/h) Environment or UPP structure 

• Single labyrinth at the UPP bottom gap -20 Interface with environment  

• Inconel-718 bolts at UPP back-flange +19 UPP structure 

• Increased  top/bottom  gap around UPP 
from 25 mm to 45 mm 

+13 Interface with environment 

• Void in blanket  manifolds +12 Environment 

• Diagnostics apertures of the UPP18  +9 UPP18 structure 

• Void around in-vessel coil manifolds and 
ELM feeders on the lateral sides of UPP 

+8 Environment 

• In summary, environment features contribute 53 microSv/h, UPP structure 19 microSv/h,  UPP18 

diagnostics apertures deposit 9 microSv/h to SDDR at 106 s after ITER SA2 irradiation scenario. 

• SDDR depends mainly on the environment, not on the UPP structure itself. 

• By using feasible shielding improvements it is possible to reduce SDDR from 95 microSv/h 

(current UPP design) to 48 microSv/h (desired design of UPP and adjacent environment). 
 

• Nuclear heating is mostly deposited by secondary photons in DFW, accounted for 342 kW among 

355 kW of total heating inside the UPP. 

• Neutron streaming through the gaps around the UPP could be reduced: 

 - on the lateral sides by insertion of fillers between the tubes of in-vessel coil manifolds and ELM 

feeders; 

 - on the bottom side by the single dogleg labyrinth; 

 - by keeping nominal 25 mm gaps on the top and bottom sides. 

Diagnostics Upper Port Plug (UPP) 

B-lite version 2 MCNP model  

5 shielding options affect the SDDR inside UPP interspace 
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Minimization (ALARA principle) of the SDDR at GUPP interspace 

We are here 

Options 
UPP 

current 

design 

Cases Green - 

Desired 

UPP 
1 2 3 4 5 6 

1) Void for blanket manifolds  

in the lateral blankets * 

No  
shielding 

No  
shielding 

No  
shielding 

No  
shielding 

No  
shielding 

No  
shielding 

Filled with 

SS 

No  
shielding 

2) Void around in-vessel coil 

lead in the side gap of UPP ** 

No 
shielding 

No 
shielding 

Filled 

with SS 

No 
shielding 

No 
shielding 

Filled 

with SS 

Filled with 

SS 

Filled with 

SS 

3) Inconel-718 bolts in the 

back flange *** 

Yes  

(25%) 

Yes  

(25%) 
Yes (25%) No 

Yes 

(25%) 

Yes 

(25%) 
No No 

4) Single labyrinth at bottom 

gap **** 
No No Yes No Yes Yes No Yes 

5) Top/bottom gap around 

GUPP [mm] 
45 25 45 25 25 25 25 25 

SDDR at GUPP interspace 

[microSv/h] -(dose decrease) 
108 

95 

(-13) 

80 

(-28) 

76 

(-32) 

75 

(-33) 

67 

(-41) 

56 

(-52) 

48 

(-60) 

*   Improvement of shielding in the blanket manifold connection area is difficult – at Blanket back side 

**  Improvement of shielding in the feeders at the side gap area of UPP is possible – at Vacuum Vessel 

*** There is an agreement to change the material of the rear-flange bolts: from Inconel alloy 718 bolts to steel SS-660 

**** No difficulty to implement the dogleg single labyrinth for diagnostics UPP 
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This is the reason why 

we do have weakened 

radiation shielding on 

the sides of EPP 

Direct 1-Step (D1S) method of Shut-Down Dose Rate (SDDR) calculations 

Rigorous 2-Step (R2Smesh) system for mesh-based SDDR estimations  
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