

Karlsruhe Institute of Technology (KIT) Institute for Neutron Physics and Reactor Technology (INR) Fusion Neutronics Group Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen http://www.inr.kit.edu

Neutronic Analyses for ITER Diagnostic Port Plugs

A. Serikov¹, L. Bertalot², U. Fischer¹, B. Levesy², S. Pak², C.S. Pitcher², A. Suarez², V.S. Udintsev²

¹Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany ²ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul-lez-Durance, France

Aims and Strategy for Port Plug Neutronics Analysis

<u>Aims</u>

- <u>Provide neutronics support</u> for the ITER Equatorial and Upper Port Plug design development;
- Check the current design to satisfy the ITER radiation requirements;
- Find design solutions for possible shielding improvements in accordance with ALARA principle – for the Shut-Down Dose Rate (SDDR)

Diagnostics Upper Port Plug (UPP)

<u>Strategy</u>

- Understanding the physical phenomena of the problem (radiation transport and activation) usually steel/water plugs with gaps.
- Choose the <u>best available neutronics model</u> of ITER (B-lite ver. 2 & 3) and modeling approximations (material homogenization, boundary conditions, impurities):
- Examine basics principles on Local models;
- Parametric analysis of the model characteristics in Local model;
- <u>Optimization</u> of the model geometry / material for <u>Shut-Down Dose Rate</u> (SDDR) as a target parameter;
- Integration of the Local MCNP model into the General ITER model (B-lite).

SDDR modeling assumptions:

Rigorous 2 Step mesh (R2Smesh) method: data flow interface between MCNP and FISPACT; **Direct 1-Step (D1S) method**: couples the decay gammas emission and propagation with the neutron transport in the same MCNP run **SA2 safety scenario** for neutron irradiation

Dose rate at 1e6 s after the ITER shutdown **ICRP74 photon-to-dose** conversion factors

B-lite version 2 MCNP model

5 shielding options affect the SDDR inside UPP interspace

Void for blanket manifolds at the lateral blanket modules Single labyrinth between DFW and Blanket module #11 – bottom of UPP

Mid of UPP

of UPP

Void around in-vessel coil lead at the side gaps of UPP

Parametric study for SDDR – shielding improvements for the Generic UPP

We are here

1e+8

Diagnostics Equatorial Port Plug (EPP)

Epp interspace Epp gaps Tot. n-flux Rigorous 2-Step (R2Smesh) system for mesh-based SDDR estimations

Direct 1-Step (D1S) method of Shut-Down Dose Rate (SDDR) calculations

	UPP			Cases					
Options	current design	1	2	3	4	5	6	Desired UPP	
1) Void for blanket manifolds	No shielding	No shielding	No shielding	No shielding	No shielding	No shielding	Filled with	No shielding	
in the lateral blankets *		0	8	8		0	55	~8	
2) Void around in-vessel coil lead in the side gap of UPP **	No shielding	No shielding	Filled with SS	No shielding	No shielding	Filled with SS	Filled with SS	Filled with SS	
3) Inconel-718 bolts in the back flange ***	Yes (25%)	Yes (25%)	Yes (25%)	No	Yes (25%)	Yes (25%)	No	No	
4) Single labyrinth at bottom gap ****	No	No	Yes	No	Yes	Yes	No	Yes	
5) Top/bottom gap around GUPP [mm]	45	25	45	25	25	25	25	25	
SDDR at GUPP interspace	108	95	80	76	75	67	56	48	
[microSv/h] -(dose decrease)		(-13)	(-28)	(-32)	(-33)	(-41)	(-52)	(-60)	
Minimization (ALARA principle) of the SDDR at GUPP interspace									
Improvement of shielding in the blanket manifold connection area is difficult – at Blanket back side Improvement of shielding in the feeders at the side gap area of UPP is possible – at Vacuum Vessel * There is an agreement to change the material of the rear-flange bolts: from Inconel alloy 718 bolts to steel SS-660 ** No difficulty to implement the dogleg single labyrinth for diagnostics UPP									
Influence to SDDR inside the UPP interspace									
Parameter of UPP Stricture / Environment				(µSv/h)	En	Environment or UPP structure			
Single labyrinth at the UPP bottom gap				-20		Interface with environment			

 Void in blanket manifolds 	+12	Environment		
 Diagnostics apertures of the UPP18 	+9	UPP18 structure		
 Void around in-vessel coil manifolds and 	+8	Environment		
ELM feeders on the lateral sides of UPP				

+19

+13

- In summary, environment features contribute 53 microSv/h, UPP structure 19 microSv/h, UPP18 diagnostics apertures deposit 9 microSv/h to SDDR at 10⁶ s after ITER SA2 irradiation scenario.
- <u>SDDR depends mainly on the environment</u>, not on the UPP structure itself.
- <u>By using feasible shielding improvements it is possible to reduce SDDR from 95 microSv/h</u> (current UPP design) to 48 microSv/h (desired design of UPP and adjacent environment).
- <u>Nuclear heating</u> is mostly deposited by secondary photons in DFW, accounted for 342 kW among 355 kW of total heating inside the UPP.
- <u>Neutron streaming</u> through the gaps around the UPP could be reduced:
 - on the lateral sides by insertion of fillers between the tubes of in-vessel coil manifolds and ELM feeders;
 - on the bottom side by the single dogleg labyrinth;

Inconel-718 bolts at UPP back-flange

from 25 mm to 45 mm

Increased top/bottom gap around UPP

- by keeping nominal 25 mm gaps on the top and bottom sides.

KIT – University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association 25th IAEA Fusion Energy Conference, St. Petersburg, Russian Federation, October 13–18, 2014

* Corresponding author: arkady.serikov@kit.edu

UPP structure

Interface with environment