

The Initial Program of W7-X on the Way to a HELIAS Fusion Power Plant

A. Dinklage^{1,*}, R. König^{1,*}, H. Maaßberg^{1,*}, T. Sunn Pedersen^{1,*}, F. Warmer¹, R. Wolf¹, A. Alonso^{2,*},
E. Ascasibar^{2,*}, J. Baldzuhn¹, C.D. Beidler^{1,*}, C. Biedermann¹, H.-S. Bosch¹, R. Brakel¹, S. Bozhenkov¹,
S. Brezinsek³, R. Burhenn¹, I. Calvo², F. Castejon², M. Drevlak¹, V. Erckmann¹, F. Effenberg⁴, T. Estrada^{2,*},
Y. Feng^{1,*}, J. García-Regaña¹, D. Gates⁵, J. Geiger^{1,*}, O. Grulke¹, D. Hartmann¹, P. Helander¹, C. Hidalgo^{2,*},
M. Hirsch¹, H. Hölbe¹, W. Kernbichler^{6,*}, R. Kleiber¹, T. Klinger¹, A. Könies¹, A. Krämer-Flecken³, M. Jakubowski¹,
G. Kocsis^{7,*}, M. Kubkowska^{8,*}, H. Laqua¹, M. Laux¹, Y. Liang³, J. Lore¹³, O. Marchuk^{3,*}, N. Marushchenko^{1,*},
P. McNeely¹, A. Mishchenko¹, V. Moncada^{9,*}, O. Neubauer^{3,*}, J. Ongena^{10,*}, M. Otte¹, N. Pablant⁵, M. Preynas¹,
E. Puiatti¹¹, M. Rack³, J. Riemann¹, N. Rust¹, F. Schauer¹, O. Schmitz⁴, H. Smith¹, T. Stange¹, T. Szepesi^{7,*},
H. Thomsen¹, J. Travere^{9,*}, Y. Turkin^{1,*}, J.-L. Velasco^{2,*}, A. Werner¹, P. Xanthopoulos¹, K. Tanaka¹², K. Ida¹²,
S. Kubo¹², R. Sakamoto¹², H.Yamada¹², M. Yokoyama¹², M. Yoshinuma¹² and

The W7-X Team^{1,+}, The TJ-II Team², The LHD-Experiment Team¹²

¹Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
 ²CIEMAT, Madrid, Spain
 ³Forschungszentrum Jülich, Jülich, Germany
 ⁴U Wisconsin, Madison WI, USA
 ⁵Princeton Plasma Physics Laboratory, Princeton NJ, USA
 ⁶Technische Universität Graz, Graz, Austria
 ⁷Wigner Institute, Budapest, Hungary
 ⁸IPPLM, Warsaw, Poland
 ⁹CEA/IRFM, Cadarache, France
 ¹⁰ERM-KMS, Brussels, Belgium
 ¹¹Consorzio RFX, Padova, Italy
 ¹²NIFS, Toki, Japan
 ¹³ORNL, Oak Ridge, TN, USA
 *EUROfusion Contributor (WPS1/S2)

+cf. authors of Bosch, et al. Nucl. Fusion **53**, 126001 (2013)

- Stellarators
- Towards a HELIAS
 Fusion Power Plant
- Wendelstein 7-X
- First Operation Phases (OP)
- Programmatic priorities
- Summary

Wendelstein 7-X

Greifswald (Germany) - being commissioned

HELIAS-type stellarator

- *N_o*=5, *R/a* = 5.5m/0.53m
 - \rightarrow 30 m³ plasma volume
- 50+20 superconducting coils (2.5T)
- ~8+7MW (ECRH, NBI) + ICRH (later upgrades)

Stellarators:

the main alternative magnetic confinement concept to the tokamak.

external coils generate rotational transform: 3D-confinement w/o plasma current

- + steady-state, intrinsically
- + no current disruptions
- + no current driven instabilities
- + no significant current drive
- + no runaway electrons
- + operation above Greenwald-limit feasible
- + lower alpha-particle pressure (given P_{fusion})

- 3D engineering
- 3D core impurity transport
- 3D plasma/fast ion confinement

high neoclassical losses

- 3D MCF: one generation behind
 - divertor concept to be verified
 - operation scenarios to be developed

Stellarator Optimization^[2]: mitigate 3D losses to pave the way to a Fusion Power Plant

^[1]Helander, Rep. Prog. Phys. 77, 0877001 (2014), ^[2]Nührenberg, Zille, Phys. Lett. A 144, 129 (1986)

W7-X: Stellarator Optimization

HELIcal Axis Advanced Stellarator (Neoclassical Optimization) taming locally trapped particles

3D plasma physics

\Rightarrow 3D impurity transport

\Rightarrow 3D turbulence

⇒ fast particles & Alfvénic inst. ⇒ high-β operation at low $v_i \sim v_e$

 \Rightarrow improved confinement modes \Rightarrow new divertor & SOL physics

The Way to a HELIAS Reactor

Engineering Study HELIAS 5-B

electro-mechanical feasibility of HELIAS fusion-power plants

Schauer et al., Fusion Eng. Design 88, 1619 (2013)

Wendelstein 7-X: Status

- main-device assembly finished (May 2014) ✓
- device commissioning on track \checkmark
- first plasma planned for summer 2015

Discrete EUROfusion HELMHOLTZ GEMEINSCHAFT

OP 1.1 2015 13 wks	uncooled carbon limiter He, (H) pulse limit: $E_{max} < 2MJ$ $\tau_{Pulse} \leq 1 s$	P _{ECRH} ~ 2 MW (5MW) gas puff surveillance diag. magnetics basic <i>n</i> , <i>T</i> , imp. Diagnostics	$\begin{array}{l} T_{e}^{NC} < 3.5 \ keV \\ T_{i}^{NC} < 0.9 \ keV \\ n < 2 \ x \ 10^{19} \ m^{-3} \\ \beta_{ISS04} < 0.6\% \\ \beta_{NC} \qquad < 1.6\% \end{array}$
OP 1.2(a) 2016 29 wks	uncooled test-divertor (C) H, (D) pulse limit: $E_{max} < 80 \text{ MJ}$ $\tau_{Pulse} \lesssim 10s \dots min$	$P_{ECRH} \sim 8 MW$ $P_{NBI}^{H} \sim 7 MW$ +profiles MHD (<i>n</i> , <i>T</i> , <i>E_r</i> ,) +impurity diagnostics	$\begin{array}{l} T_{e}^{\ NC} < 3.5 \ keV \\ T_{i}^{\ NC} < 3 \ keV \\ n \ < 1.6 \ x \ 10^{20} \ m^{-3} \\ \beta_{ISS04} \ < 1.2\% \\ \beta_{NC} \ \ < 3\% \end{array}$
OP 1.2(b) 2017 29 wks	test scraper element	+ P _{ICRH} ~ 1.6 MW P _{tot} ≤ 10 MW + blower gun + diagn. upgrades	
OP 2 >2019	actively cooled divertor (CFC) steady-state capable D, H technical limit: 30 min/10MW P _{target} /A < 10 MW/m ²	$P_{ECRH} \sim 10 \text{ MW}$ $P_{NBI}^{H} \sim 7 \text{ MW or}$ $P_{NBI}^{D} \sim 10 \text{ MW}$ $P_{ICRH} \sim 4 \text{ MW}$ $P_{tot} ≤ 20 \text{ MW}$ + quasi cw pellet injection + steady-state upgrades	$\begin{array}{l} T_{e}^{\ NC} < 4.5 \ keV \\ T_{i}^{\ NC} < 4 \ keV \\ n < 2.4 \ x \ 10^{20} \ m^{-3} \\ \beta_{ISS04} < 2 \ \% \\ \beta_{NC} \qquad < 5 \ \% \end{array}$

uncooled carbon limiter, He, (H), *E_{max}* < 2MJ OP1.1 priorities: integral commissioning and first plasma operation

X2-heated

EUROfusion

HELMHOLTZ

limiter heat loads: SOL physics

flux-surfaces/error-fields, first X2-heated plasma, limiter SOL

Sunn Pedersen et al., EPS Berlin (2014)

Uncooled but robust TDU:

unique possibility to explore aggressively the configuration space

flexibility to react on new insights and technical changes

Guiding principles:

1. increase density

target: beyond X2-ECRH cut-off (~1.5...2 x 10^{20} m^{-3}) divertor operation, towards high-nT τ /high- β @low- ν * ...

2. employ configurational flexibility optimization

\rightarrow arrange physics topics along these lines

W7-X coils & protection components: systematic explorations & adjustments

Configurational flexibility: qualify scenarios & address physics topics

Safety Diagnostics & Control freedom in OP1.2 to prepare high-power divertor operation prepare safe steady-state operation

Heating

at moderate densities: small ECCD (some 10kA) for configuration adjustments at high-densities: transition from X2- to O2- heating ... provide means for high-density operation / configuration control

Fuelling and Density Control

avoid core depletion by 3D transport (thermodiffusion) ... qualify fuelling schemes ... control core and separatrix density

Divertor operation schemes

→ mitigation of operation risks with water-cooled PFCs (OP2)

avoidance of impurity accumulation understanding 3D transport (edge/core) and control of sources

Turbulence & Improved Confinement Modes

study the interplay of turbulence, magnetic geometry and E_r beyond neoclassical transport & improved confinement modes

3D Fast-Ion Physics

generation, detection and configuration dependencies qualify and prepare fast-ion physics studies

High-beta, MHD

prepare the assessment of collisionless particle confinement towards high-beta operation in OP2 and MHD effects

begin the physics exploitation of optimized stellarators

ELMHOLTZ

Helander et al. TH/1-2

Wendelstein 7-Xen-route to a HELIAS Fusion Power Plant• achieve steady-state, high- $nT_i \tau_E$ plasmas• gain predictive capabilities

First Phases (pulsed, lower power): qualify divertor & develop scenarios start to address the physics of optimization

Improved Confinement Modes: High-Density H-mode transition in W7-AS

McCormick et al., PRL (2002)

avoidance of impurity accumulation: employ the interplay of transport, sources (SOL), and improved operation modes

avoidance of impurity accumulation understanding 3D transport (edge/core) and control of sources

Turbulence & Improved Confinement Modes

study the interplay of turbulence, magnetic geometry and E_r beyond neoclassical transport & improved confinement modes

3D Fast-Ion Physics

generation, detection and configuration dependencies qualify and prepare fast-ion physics studies

High-beta, MHD

prepare the assessment of collisionless particle confinement towards high-beta operation in OP2 and MHD effects

begin the physics exploitation of optimized stellarators

ELMHOLTZ

Helander et al. TH/1-2

Wendelstein 7-X en-route to a HELIAS Fusion Power Plant

- achieve steady-state, high-*nT_iτ_E* plasmas
 gain predictive capabilites
- First Operation Phases (pulsed, lower power):
 - qualify safe divertor & develop steady-state scenarios
- start to address the physics of optimization

PFC-technology structures the way to reliable, steady-state, high $-nT\tau_E$ operation

Preparation for the actively cooled divertor is the primary target of the first phase. Long term goal: Basis for a HELIAS FPP

* from: Fusion Electricity: A roadmap to the realisation of fusion energy (F. Romanelli et al., EFDA, 2012)

EUROfusion

HELMHOLTZ

W7-X X2+NBI and O2 compared to $V = 1500 \text{ m}^3$ Reactor

C.D. Beidler

Wendelstein 7-X – still a large gap but large enough to assess reactor physics aspects.