Fast Particle Behavior in Globus-M

N.N. Bakharev¹, F.V. Chernyshev¹, P. R. Goncharov², V.K. Gusev¹, A.D. Ibliaminova¹, V.A. Kornev¹, G.S. Kurskiev¹, A.D. Melnik¹, V.B. Minaev¹, M.I. Mironov¹, M.I. Patrov¹, Yu.V. Petrov¹), N.V. Sakharov¹), S.Yu. Tolstyakov¹), P.B. Shchegolev¹), G.V. Zadvitskiy²)

1) Ioffe Institute, St. Petersburg, Russia, ²⁾ St. Petersburg State Polytechnical University, St. Petersburg, Russia

10 <u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>							
3D tracking + Boltzmann Eq.			NUBEAM			3D 1	
Type of losses	Power losses, %	Power losses, %	Type of losses	Power losses, %	Power losses, %	Type of lo	
	Not shifted	Shifted in		Not shifted	Shifted in		
			internal CX	21	15		
slow down	25	17	external CX	5	5	slow down sawtoot	
shine-through	7	8	shine-through	7	7	shine-thro	
bad orbit	14	13	bad orbit	7	3	bad orb	

TOTAL

30

40

46

TOTAL

38

156	158 160 t (ms)	162 164	_		
3D tracking + Boltzmann Eq.			NUBEAM		
Type of losses	Power losses, %	Power losses, %	Type of losses	Power losses, %	Power losses, %
	Not shifted	Shifted in		Not shifted	Shifted in
			internal CX	18	8
slow down + sawtooth	25	20	external CX	12	32
shine-through	8	8	shine-through	5	6
bad orbit	50	30	bad orbit	52	29
TOTAL	83	58	TOTAL	87	73

Summary: total power losses of the main neutral beam energy component vary from 40% (for 18 keV H beam and shifted inside plasma column) up to 90% (for 26 keV D beam and shifted outside plasma column).

Alfven Eigenmodes	FO losses dependence on I_p and B	Predictions for Globus-M2	
 n = 1, m = 3 TAEs were observed in the experiments with D injection experiments. Additional n = 2 modes were observed in the H NBI experiments. Different influence of the TAE on fast ion confinement: at D-injection: high losses during strong chirping bursts of 0.5 ms duration at H-injection negligible losses during long-lasting mode of several ms duration with weaker amplitude 	Direct losses dependence on I _p and B 18 keV H NBI, D plasma 18 keV H 200 and 105 kA 0.4 T, and 200 kA 0.2T 0.2	 I_p and B_{tor} increase in Globus-M2 will lead to much better fast ion confinement. Significant reduce of sawtooth-induced losses and losses due to TAEs is expected too. Modeling shows, that utilization of the fast ions with energies up to 60 keV is quite reliable in Globus-M2. NUBEAM simulations show that total losses will be tolerable. 	
Correlation of TAE with neutron rate and NPA fluxes , D \rightarrow D caseNPA spectra at TAE development, D \rightarrow D caseNPA spectra at TAE development, D \rightarrow D caseNPA spectra at TAE development, D \rightarrow H case 1^{7} 1^{38} 1^{39} 1^{40} 1^{41} 1^{9} 1^{9} 1^{9} 1^{9} 1^{9} 1^{9} 1^{9} 1^{7} 1^{6} 1^{9} $1^$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$I_{p} = 0.5 \text{ MA} \qquad B_{tor} = 1 \text{ T}$ $(8) 890 100 100 100 100 100 100 100 100 100 1$	

