

Status of JT-60SA Construction

P. Barabaschi, Y. Kamada, S.Ishida, H. Shirai For the JT-60SA Integrated Project Team EU: F4E-CEA-ENEA-CNR/RFX-KIT-CIEMAT-SCKCEN-

Basic machine parameters

Plasma Current	5.5 MA				
Toroidal Field, B _t	2.25 T				
Major Radius, R _p	2.96				
Minor Radius, a	1.18				
Elongation, κ_X	1.95				
Triangularity, δ_X	0.53				
Aspect Ratio, A	2.5				
Shape Parameter, S	6.7				
Safety Factor, q ₉₅	~3				
Flattop Duration	100 s				
Heating & CD Power	41 MW				
N-NBI	10 MW				
P-NBI	24 MW				
ECRF	7 MW				
Divertor wall load	15 MW/m²				

Sharing

Progress since 2010

Design work largely completed JT-60U disassembly completed Procurement well underway Assembly started Preparing plans for operation

Schedule

2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Ope	eration											First Plas	
Comr	nissionir	ng		S	tart Tokar	mak Asse	mbly	Commi	ssioning Ad	ctivities		sioning & Co	
Ass	sembly			Disassembly Activities		CB VV, TS		TF	ssembly	CVB, 1	EF/CS FS, Feeder, essel, etc		
	truction	(Magnet, V Thermal SI		l, Cryostat,	Ba	ostat ase very		First TF delivery		st TF ivery			
Au	xiliary syste	ms (Heatin	g Systems,	d		/V delivery upplies, Cry	ogenic	ystem)	d	ast EF elivery CS delivery			
		Modi	fication of e	existing PS		Delivery of		U, SCMPS lation of Cryo	genic Sys.				

Disassembly

Completed December 2012

Cryostat

Vacuum Vessel

•

•

Double Walled • 18mm+18mm **Boronised Water** interspace (~160mm)

Vacuum Vessel

Vacuum Vessel

- · All SC Magnet
 - » Nb₃Sn for CS
 - ▹ NbTi for TF, EF
- · 18 TF Coils
- · 6 EF Coils
- 4 CS independent modules

Conductors

Furukawa Electric Hitachi Power ICAS – Italy

Globally >2/3 of conductor produced

TFC conductor

CS conductor

EF-L&H conductor

Manufacture - EF Coils

- The manufacturing of EF5 and EF6 completed January 2014.
- Upper coil manufacture (EF1-3) now underway.

Manufacture - EF Coils

Processing of Helium Inlet

QP after heat treatment

OP2 after heat treatment

OP3 and OP4 after heat treatment

TF Magnet features

- Cable in Conduit Conductor, 72 turns, 25.7kA each
- 6 double pancakes, 6 turns/pancake. Helium inlets in high field side – joints in external low field side
- Windings enclosed in steel casings
- Steel casings supported to ground vertically and toroidally - connected in inboard curved regions by "Inner Intercoil Structure"
- Steel casings guided toroidally by "Outer Intercoil Structure" to support out of plane loads.

TF Coils Procurement Cycle

Alstom – WP 9 coils

Manufacture – TF

Manufacture – TF

Manufacture – TF

Process and control cabinets Warm valves HTS current lead Valve box Cryostat Power

Power supply Test frame

HTS current leads

TF HTS CL nr. 3 & 4

CultKa with JAEA jumper connected to HTS CL nr 1&2

TF HTS CL nr. 1&2 integrated in CultKa

SNU: ENEA/OCEM Energy Technology)

- first unit type tested Sept 2014
- acceptance in Naka by Sept 2017

POWER ELECTRONICS

ENER

cea

Jema

RWM PS: CNR-Consorzio RFX

- Prototype tested in June 2014.
- PA/contract 2014/early 2015.
- **Delivery by March 2017** ٠

RWM PS Prototype

- contracts signed •
 - ENEA: CS/EF/FPCC (POSEICO) \succ
 - > CEA: TF/EF (JEMA)
- Detailed design being finalised
- Delivery by Dec 2017 and Feb 2016 ٠ resp.

33

CONSORZIO RFX

Magnet Power Supplies - JA

46 cooling towers were installed in Mar. 2014.

12 water pumps replaced.

Pipe laying work for the cooling towers will be completed in Oct. 2014. The operation of the secondary cooling water supply will start in Apr. 2015 for the heating Motor Generator inspection.

Buildings

Compressor Building Under construction \Rightarrow will be completed in Mar. 2015

Foundation construction and preparatory work was completed

JT-60 Transformer Yard

JT-60 Rectifier Room

Dump Resistor Area for TF-QPC

Cryoplant

RCB and ACB in AL-AT workshop

RCB

Cea

Kaeser compressor leak and pressure test

Development of negative ion source

To realize 22A, 100 s negative ion beams, the JT-60 negative ion source has been modified.

Higher power achieved by 110GHz gyrotron:**1.4MW x 9s** Longer pulse at the higher power will be tested with the **2-frequency gyrotron.**

Divertor Cassette Manufacturing

Design Requirements

- Remove max exhaust power for 100 sec.
- Remote handling compatible.

Development

 Vertical divertor with CFC monoblock targets All 36 divertor cassettes were
 Plasma facing components with

Manufacture of CFC monoblock targets

4

JT-60SA Research Plan

- "JT-60SA Research Plan" summarizes
 "Research items and Strategy for JT-60SA" to solve critical issues in ITER and DEMO.
- Points of the JT-60SA RP
- Prepare plan
- Encourages collaborative studies on JT-60SA
- > Optimize hardware: heating, fueling, pumping, diagnostics, etc.
- Grow year by year toward fruitful experiments.

Chapter 2:Research Strategy

Chapter 3: Operation Regime Development Technical Responsible Chapter 4: MHD Stability and Controlicers (TROs) Chapter 5: Transport and Confine freadt the Chapter 6: High Energy Particle Benavior in their research Chapter 7: Pedestal and Edge Physics Chapter 8: Divertor, SOL and PMI Chapter 9: Fusion Engineering Chapter 10: Theoretical models and

5

Steady Expansion of SARP Activity

• Communities

Conclusions

- Design mostly completed
- Almost all procurement arrangements signed. Manufacturing in full swing. Key components being completed and delivered.
- About 50% the creditworthy deliverables have been accepted.
- Machine assembly underway.
- JT-60SA research plan jointly elaborated between EU and JA.

Thanks to:

