

A Study of Core Thomson Scattering Measurements in ITER Using a Multi-Laser Approach

G.S. Kurskiev¹, P.A. Sdvizhenskii², P. Andrew³, M. Bassan³, A.N. Bazhenov¹, I.M. Bukreev¹, P.V. Chernakov¹, M.M. Kochergin¹, A.B. Kukushkin^{2,4}, S.V. Masyukevich¹, E.E. Mukhin¹, A.G. Razdobarin¹, D.S. Samsonov¹, V.V. Semenov¹, S.Yu. Tolstyakov¹

¹Ioffe Physical Technical Institute, 194021, St. Petersburg, Russian Federation
²NRC "Kurchatov Institute", Moscow, 123182, Russian Federation
³ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex, France
⁴National Research Nuclear University MEPhI, Moscow, 115409, Russia

(i) The problem:

to measure T_e as high as 40 keV using Thomson Scattering in the reactor core both for Maxwellian and non-Maxwellian case of electron velocity distribution function especially in the case of unknown system spectral responsivity.

(ii) The suggested solutions:

to use IR probing *laser 1320 n*m additionally to convenient NIR laser 1064 nm to improve measurement accuracy for T_{e}^{\sim} 40keV;

to use specific algorithm for TS data processing in case of non-Maxwellian eVDF;

to use multi-laser approach, that suggests plasma probing with 3 lasers -

946 nm/1064 nm/1320 nm simultaneously in the case of unknown system spectral sensitivity.

(iii) Next steps – test multi-laser approach and designed data procession technique in real experiment on existing fusion device.