

Max-Planck-Institut für Plasmaphysik

Recent ASDEX Upgrade Research in Support of ITER and DEMO

Hartmut Zohm

for the ASDEX Upgrade /EUROfusion MST1 Team*

MPI für Plasmaphysik, Garching, Germany

*see list at the end of the talk

- ASDEX Upgrade: machine and programme
- Edge: H-mode access and pedestal physics
- Core: transport and MHD stability
- Exhaust: operation at high P_{sep}/R and P_{rad,core}/P_{tot}
- Scenario development

IAEA Fusion Energy Conference, OV2/2, St. Petersburg, Russia, 13.10.2014

ASDEX Upgrade: machine and programme

- Edge: H-mode access and pedestal physics
- Core: transport and MHD stability
- Exhaust: operation at high P_{sep}/R and P_{rad,core}/P_{tot}
- Scenario development

AUG Programme in support of ITER and DEMO

ITER

DEMO (example)

Q=10: β_N =1.8, H=1, n/n_{GW}=0.85 P_{sep}/R = 15 MW/m, P_{rad,core}/P_{tot}=0.3 Large type I ELMs not allowed Very small number of disruptions Q \geq 30: β_N =3.5, H=1.2, n/n_{GW}=1.2 P_{sep}/R = 15 MW/m, P_{rad,core}/P_{tot}=0.75 No ELMs allowed (?) Virtually no disruptions

AUG Programme in support of ITER and DEMO

ITER

DEMO (example)

Q=10: β_N =1.8, H=1, n/n_{GW}=0.85 P_{sep}/R = 15 MW/m, P_{rad,core}/P_{tot}=0.3 Large type I ELMs not allowed Very small number of disruptions Q \geq 30: β_N =3.5, H=1.2, n/n_{GW}=1.2 P_{sep}/R = 15 MW/m, P_{rad,core}/P_{tot}=0.75 No ELMs allowed (?) Virtually no disruptions

ASDEX Upgrade has a powerful H&CD system

New: rotating fields up to 150 Hz, continuous poloidal phase scan at constant n

Massive outer W-divertor and Bare Steel Tiles

P92 tiles (chemistry and ferromagnetism similar to EUROFER)

(iron mostly saturated, typical $\mu_r = 1.7$)

massive tungsten tiles

Both enhancements performed reliably without problem during 2014 campaign

A. Herrmann et al., this conference

+ switchable liquid He valve for reduction of pumping (high power scenarios)

+ new divertor manipulator allowing large area sample insertion

ASDEX Upgrade: machine and programme

- Edge: H-mode access and pedestal physics
- Core: transport and MHD stability
- Exhaust: operation at high P_{sep}/R and P_{rad,core}/P_{tot}
- Scenario development

F. Ryter et al., Nucl. Fusion 2014

Increase of P_{LH} at low density disappears when plotted versus q_i

- points towards q_i being main ingredient for edge E_r
- unifies current and heating type dependence at low density

Reminder: P_{LH} about 20% lower with all-metal wall, also seen on JET

H-mode operation: low density limit

Transition to low density branch governed by e-i coupling

- assume that τ_{ei} / $\tau_{E} \approx \text{const.}$ at $n_{e,min}$
- inserting τ_{E} and (medium density) P_{LH} -scalings leads to $n_{e,min}$ scaling

Scaling unifies experimental data, predicts ITER to be in linear regime

 $n_{e,\min}^{scal} = 0.7 I_p^{0.34} a^{-0.95} B_T^{0.62} (R/a)^{0.4}$

Stagnation of core density build-up due to fuelling limit (source shifts to SOL) High SOL density leads to strong filamentary transport there

changed boundary condition at target can increase filament velocity

Stagnation of core density build-up due to fuelling limit (source shifts to SOL) High SOL density leads to strong filamentary transport there

changed boundary condition at target can increase filament velocity

Edge density stays below n_{GW} even with pellets at n = 1.5 n_{GW}

For DEMO: expect strong low collisionality anomalous particle pinch

DEMO might be able to operate above n > n_{GW}

H-mode operation: ELM Mitigation at low ν^{\star}

Contrary to high v^* -branch, poloidal spectrum is important

- best ELM mitigation coincides with strongest density pumpout
- note: also 'classical' ELM-free phase can be triggered

At optimum phasing, significant type ELM mitigation is observed

- ELMs still separate events, but much higher frequency, smaller ΔW
- due to strong density pumpout and T_{i,ped} decrease, H is reduced
- optimum mitigation when field is peeling resonant (MARS-F analysis)

A. Kirk et al., this conference

- ASDEX Upgrade: machine and programme
- Edge: H-mode access and pedestal physics
- Core: transport and MHD stability
- Exhaust: operation at high P_{sep}/R and P_{rad,core}/P_{tot}
- Scenario development

New Microwave Diagnostics for Turbulence Studies

Response of density fluctuations to mid-radius ECRH in H-mode

- low ($k_{\perp} \approx 4-8 \text{ cm}^{-1}$) fluctuations increase while high k_{\perp} does not
- radial amplitude dependence consistent with local flux matched nonlinear GENE simulations that find ITG-regime

T. Happel et al., subm. to Phys. Plasmas

FIDA finds deviation from neo-classical slowing down at high P_{NBI}

- here, also NBCD not consistent with neo-classical prediction
- previous analysis indicated neo-classical slowing down at lower P_{NBI}
- cause not yet clearly identified (some MHD activity present)

B. Geiger et al., EPS 2014, to appear in PPCF

IPP

Feedback system targets multiple mode control

IPP

Feedback system targets multiple mode control

ΡΡ

Feedback system targets multiple mode control

- ASDEX Upgrade: machine and programme
- Edge: H-mode access and pedestal physics
- Core: transport and MHD stability
- Exhaust: operation at high P_{sep}/R and $P_{rad,core}/P_{tot}$
- Scenario development

Midplane λ_q small, scales like ρ_p , not with R \rightarrow figure of merit P_{sep}/R

- broadening by perpendicular transport described by $\lambda_{int} = \lambda_q + 1.64 \text{ S}$
- scaling: S ~ n/B_p or 1/T_{target} consistent with increased $\chi_{\perp}/\chi_{\parallel}$

Emphasizes need for detached divertor operation in ITER/DEMO

Midplane λ_q small, scales like ρ_p , not with R \rightarrow figure of merit P_{sep}/R

- broadening by perpendicular transport described by $\lambda_{int} = \lambda_q + 1.64 \text{ S}$
- scaling: S ~ n/B_p or 1/T_{target} consistent with increased $\chi_{\perp}/\chi_{\parallel}$

Emphasizes need for detached divertor operation in ITER/DEMO

Feedback controlled N-seeding: $q_{div} < 5 \text{ MW/m}^2$ at $P_{heat} = 23 \text{ MW}$

- $P_{sep}/R = 10 \text{ MW/m} (2/3 \text{ the ITER target}) \text{ at } H=0.9-1.0$
- with higher stronger seeding, full detachment, but density rises, H drops

IPP

Applying the ITER divertor solution to DEMO, high f_{rad} is needed

IPP

Applying the ITER divertor solution to DEMO, high f_{rad} is needed

- ASDEX Upgrade: machine and programme
- Edge: H-mode access and pedestal physics
- Core: transport and MHD stability
- Exhaust: operation at high P_{sep}/R and P_{rad,core}/P_{tot}
- Scenario development

Stable discharges as long as enough gas puff and central heating

- match is in q_{95} , δ , β_N , n/n_{GW} , and hence not in v^* (also not in ρ^*)
- confinement reduced, H=0.85 at ITER β_N
- ELMs are large and mitigation techniques do not work reliably

Due to changed operational window, target can only be met at higher β_N

- gas puff needed to keep discharge stable, degrades pedestal
- with higher β_N and N-seeding H=1 is recovered (increased edge stability)

These findings suggest to move to lower I_p , higher β_N ('improved H-mode')

• first attempt shows same W_{MHD} at 20% lower I_p , target for optimisation

The ASDEX Upgrade / EUROfusion MST1 Team

PP

J. Ahn¹, L. Aho-Mantila², S. Äkäslompolo², C. Angioni, O. Asunta², M. de Baar³, M. Balden, L. Barrera Orte, K. Behler, J. Belapure, A. Bergmann, J. Bernardo⁴, M. Bernert, M. Beurskens⁵, R. Bilato, G. Birkenmeier, V. Bobkov, A. Bock, A. Bogomolov³, T. Bolzonella⁶, J. Boom, B. Böswirth, C. Bottereau¹, A. Bottino, F. Braun, S. Brezinsek⁷, F. Brochard⁸, A. Buhler, A. Burckhart, P. Carvalho⁴, C. Cazzaniga⁶, D. Carralero, L. Casali, M. Cavedon, A. Chankin, I. Chapman⁵, F. Clairet¹, I. Classen³, S. Coda⁹, R. Coelho⁴, K. Coenen⁷, L. Colas¹, G. Conway, S. Costea¹⁰, D.P. Coster, G. Croci¹¹, G. Cseh¹², A. Czarnecka¹³, P. de Marné, P. Denner⁷, R. D'Inca, D. Douai¹, R. Drube, M. Dunne, B. Duval⁹, R. Dux, T. Eich, S. Elgeti, K. Engelhardt, K. Ertl, B. Esposito⁶, E. Fable, U. Fantz, H. Faugel, F. Felici¹⁴, S. Fietz, A. Figueredo⁴, R. Fischer, O. Ford, P. Franzen, L. Frassinetti¹⁵, M. Fröschle, G. Fuchert¹⁶, H. Fünfgelder, J.C. Fuchs, K. Gál-Hobirk, M. Garcia-Muñoz¹⁷, B. Geiger, L. Giannone, E. Giovannozzi⁶, C. Gleason-Gonzáles⁷, T. Görler, T. Goodmann⁹. G. Gorini¹¹, S. da Graca⁴, A. Gräter, G. Granucci¹¹, H. Greuner, J. Grießhammer, M. Groth², A. Gude, S. Günter, L. Guimarais⁴, G. Haas, A.H. Hakola¹⁸, T. Happel, D. Hatch, T. Hauff, B. Heinemann, S. Heinzel, P. Hennequin¹, A. Herrmann, J. Hobirk, M. Hölzl, T. Höschen, J.H. Holm¹⁹, C. Hopf, F. Hoppe, A. Houben, V. Igochine, T. Ilkei¹¹, W. Jacob, A.S. Jacobsen¹⁹, J. Jacquot, M. Janzer, F. Jenko, T. Jensen¹⁹, C. Käsemann, A. Kallenbach, S. Kálvin¹², M. Kantor⁷, A. Kappatou³, O. Kardaun, J. Karhunen², S. Kimmig, A. Kirk⁵, H.-J.Klingshirn, M. Kocan, F. Koch, G. Kocsis¹², A. Köhn¹⁶, M. Köppen, J. Kötterl, R. Koslowski⁷, M. Koubiti¹, M. Kraus, K. Krieger, A. Krivska²⁰, D. Kogut¹, A. Krämer-Flecken⁷. T. Kurki-Suonio², B. Kurzan, K. Lackner, F. Laggner²¹, P.T. Lang, P. Lauber, N. Lazányi¹², A. Lazaros²², A. Lebschy, F. Leuterer, Y. Liang⁷, Ch. Linsmeier, A. Litnovski⁷, A. Lohs, N.C. Luhmann²³, T. Lunt, H. Maier, O. Maj, J. Mailloux⁵, A. Mancini¹¹, A. Manhard, K. Mank, M.-E. Manso⁴, M. Mantsinen²⁴, P. Manz, M. Maraschek, E. Markina, C. Martens, P. Martin²⁵, A. Mayer, M. Mayer, D. Mazon¹, P.J. McCarthy²⁶, R. McDermott, G. Meisl, H. Meister, A. Medvedeva, P. Merkel, R. Merkel, V. Mertens, H. Meyer⁵, O. Meyer¹, D. Milanesio⁶, J. Miettunen², A. Mlynek, F. Monaco, D. Moseev, H.W. Müller, S. Müller²⁷, M. Münich, A. Nemes-Czopf⁹, G. Neu, R. Neu, V. Nikolaeva⁴, S.K. Nielsen¹⁹, M. Nocente¹¹, B. Nold¹⁶, J.-M. Noterdaeme, M. Oberkofler, R. Ochoukov, T. Odstrcil, G. Papp, H.K. Park²⁸, A. Pau⁶, G. Pautasso, M.S. Pedersen¹⁹, F. Penzel, P. Piovesan²⁵, C. Piron²⁵, B. Plaum¹⁶, B. Plöckl, V. Plyusnin⁴, Y. Podoba, G. Pokol¹², F. Pompon, E. Poli, K. Polozhiv, S. Potzel, R. Preuss, D. Prisiazhniuk, T. Pütterich, M. Ramish¹⁶, C. Rapson, J. Rasmussen¹⁹, S.K. Rathgeber, G. Raupp, D. Réfy⁹, M. Reich, F. Reimold, M. Reinke⁵, T. Ribeiro, R. Riedl, G. Rocchi¹¹, M. Rodriguez-Ramos¹⁷, V. Rohde, J. Roth, M. Rott, F. Ryter, M. Salewski¹⁹, L. Sanchis-Sanchez¹⁷, G. Santos⁴, J. Santos⁴, P. Sauter, A. Scarabosio, G. Schall, K. Schmid, O. Schmitz²⁹, P.A. Schneider, W. Schneider, M. Schneiler, R, Schrittwieser¹⁰, M, Schubert, T, Schwarz-Selinger, J, Schweinzer, B, Scott, T, Sehmer, M, Sertoli, A, Shalpegin³⁰, G, Sias⁶, M, Siccinio, B, Sieglin, A, Sigalov, A, Silva⁴, C, Silva⁴, P. Simon, F. Sommer, C. Sozzi¹¹, M. Spolaore⁶, M. Stejner Petersen¹⁹, J. Stober, F. Stobbe, U. Stroth, E. Strumberger, K. Sugiyama, H.-J. Sun, W. Suttrop, T. Szepesi¹², T. Tala², G. Tardini, C. Tichmann, D. Told, L. Tophøi¹⁹, O. Tudisco⁶, U. von Toussaint, G. Trevisan²⁵, W. Treutterer, M. Valovic⁵, P. Varela⁴, S. Varoutis⁷, D. Vezinet, N. Vianello²⁵, J. Vicente⁴, T. Vierle, E. Viezzer, C. Vorpahl, D. Wagner, X. Wang, T. Wauters²⁰, I. Weidl, M. Weiland, A. Weller, R. Wenninger, B. Wieland, M. Wiesinger²¹, M.Willensdorfer, B. Wiringer, M. Wischmeier, R. Wolf, E. Wolfrum, D. Wünderlich, E. Würsching, Z. Yang, Q. Yu, I. Zammuto, D. Zarzoso, D. Zasche, M. van Zeeland³¹, T. Zehetbauer, M. Zilker, S. Zoletnik¹², H. Zohm

Max-Planck-Institut für Plasmaphysik, 85748 Garching, Germany: ²Tekes, Aalto University, Helsinki, Finland; ⁴CFN, IST Lisbon, Portugal; ⁶C.R.E, ENEA Frascati, CP 65, 00044 Frascati (Rome), Italy; ⁸Institut Jean Lamour, UMR 7193 CNRS, Vandoeuvre, France; ¹⁰ÖÄW. University of Innsbruck. Austria: ¹²KFKI, HAS, Budapest, Hungary; ¹⁴Technische Universiteit Eindhoven, The Netherlands; ¹⁶IGVP, Universität Stuttgart, Germany; ¹⁸TEKES VTT, Espoo, Finland; ²⁰ERM/KMS. Brussels. Belgium: ²²Hellenic Republic, Athen, Greece; ²⁴CIEMAT, Madrid, Spain; ²⁶DCU, University College Cork, Ireland; ²⁸Gwacheon, South Korea: ³⁰University of Nancy, France:

¹CEA, Cadarache, France;
³FOM-Institute DIFFER, TEC, Nieuwegein, The Netherlands;
⁵CCFE Fusion Association, Culham Science Centre, UK;
⁷Forschungszentrum Jülich, Germany;
⁹CRPP, Lausanne, Switzerland;
¹¹ENEA, IFP, CNR, Milano, Italy;
¹³Warsaw University of Technology, 00-661 Warsaw, Poland;
¹⁵VR, Stockholm, Sweden;
¹⁷University of Seville, Spain;
¹⁹DTU, Kgs. Lyngby, Denmark;
²¹ÖAW, IAP, TU Wien, Austria;
²³University of California, Davis, CA 95616, USA;
²⁵Consorzio RFX, ENEA, Padova, Italy;
²⁷University of California, San Diego, CA 92110, USA;
²⁹University of Madison, Wisconsin, USA;