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RF WAVES FOR HEATING & CURRENT DRIVE

IN NUCLEAR FUSION PLASMAS

Waves have to channel efficiently and reliably through
the edge plasma from the antenna to the plasma core

Wave Coupling
- Power handling,
CD efficiency

Ponderomotive forces

- Density depression
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Wave scattering, PI
“Spectral
broadening

RF sheaths (ICRF)
-Hot spots,
Impurities

Electron acceleration
(LH)
-Hot spots

Direct measurement of RF electric field = calibrate coupling model
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cea OUTLINE

3 OAK RIDGE NC STATE
National Laboratory |JN|VERSITY

Q Lower Hybrid wave coupling
O Dynamic Stark effect spectroscopy diagnostic and modeling
Q Electric field measurements during LHCD experiments

O Conclusion & Outlook
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LOWER HYBRID WAVE COUPLING




LOWER HYBRID ANTENNA FOR CURRENT DRIVE
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X-mode
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Protection Limiter

Directive (asymmetric) wave
launched for Current Drive

Launched Fourier
Power Transform
Spectrum
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Parallel wave index n//
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DIRECTIVITY OF THE WAVE AFFECTS CD EFFICIENCY

C3 antenna
8,
---neO:h{lO”m'3 200
7 —n_=2.5x10""m" -20%
B Depending on RF coupling 6
conditions, wave directivity can
2y VVC ol
change significantly 3
g 4_
_ o =" | Counter-current Co-%,urrent
B Directivity is not measured , but gl

derived from coupling codes

wave index n//

= From an in-situ measurement of the electric field

direct estimate of the wave directivity
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DIAS DIAGNOSTIC ON TORE SUPRA




C@ASSIVE STARK-EFFECT SPECTROSCOPY DIAGNOTIC (DIAS) SET-UP eLRfm

ON TORE SUPRA

LH Launcher

Sight ranged limited
by Inner Wall

DIAS
Endoscope

Klepper, RSI14

- B (Zeeman effect) _ )

- I?rlastma/neutrals toroidal rotation (DOppler
effec

— (S?ark effect)
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DYNAMIC STARK EFFECT IS FUNDAMENTALLY

DIFFERENT FROM STATIC STARK EFFECT

Dynamic Static
E = Egrp cos(wt) E = FEpc

-~ - 9 N ~ = - =
Iii(w) =1 Z Je(arp)d(wik —@ —8w)  I1;i(@) = Id(wik — @ — ape)

app X Egp apc X Epc
0 e.g. for Dy (n=4-22) _
et | wa Martin, PhD
ol - Thesis14
0.75 0.75
_0.50 _050
30'25 go,zs
= 2 0 7 ] ?
' l l | | ‘
g z e
= e apc
Lii = 1JZ(agrp) Iii = 1.
4862 4862.5 4863.5 4861.5 4862 4862.5 4863 4863.5 4864
Wavelength (A) Wavelength (A)
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PHYSICS-BASED SPECTRAL MODEL

., VUAK RIDGE NC STATE

National Laboratory | JN|VERSITY
Schrddinger equation encompasses 3 Hamiltonians

in Y —(Hy +H, + Hyy )P

A Martin, submitted
to PPCF

Unperturbed Hamiltonian Hamiltonian associated
Hamiltonian associated with dynamic E

with static BO H., = E, coswt

First order time dependent perturbation (E; <50kV/cm)

Time averaged emission intensity for the | i k transition determined
Discrete spectral line profile obtained by summing over both the i and k ind.
Convolution with the instrument and radiator distribution functions

= The obtained continuous spectral line profile is directly
compared with the experimental measurements.
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PASSIVE STARK-EFFECT SPECTROSCOPY

MODELLING VS. EXPERIMENT

,__Modeling of the spectral data Full wave electric field modelling
12—y Y Y 1
[’ Model assuming
| P
Radial E
1_0{ 5 / ER ‘ fr )=3.7e9 Surface: Electric field norm (V/m) Arrow Surface: Contour: ne_rho(rho_t(x,y)) -
- Experimental T .
. Data Points Model _ 7& N e o
0.80 F assuming - = e~ ’
S [ \ Poloidal Epp =k -
s 0-60,t —— Model
< ‘L 4 assuming o
2 040~ M'odel . Inner Wall Toroidal Ey q .
= - without By, Component -
o L 3 (included in
(0
0.20# all models) A
0.0 ‘ ‘ = Klepper, PRL13
4858 4859 4860 4861 4862

Wavelength (&) Fully time-dependent modelling,
R.C. Isler and E.H. Martin (ORNL)

i Datafits the model with Radial E, , as expected from full wave
electric modelling when n /n . .+>>1
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PASSIVE STARK-EFFECT SPECTROSCOPY

ESTIMATING THE EMISSION REGION

Emission region is bounded by
Line-of-sight (Toroidal) Atomic physics (Radial)

froa(l)=3.7e9 Surface: Electric field norm (V/m) A 2581;3)(10S
x10
1 014 = T | P Cad . T T T T
: -~ T1,0=4eV
0.9 1 » .rl- “.. i
012 K . N,0=1x101"m3°
0.8 z % |
é % 010 K, -_..
@ 0.7 s .
§ 0.6 C‘:L 'c. .‘.
i S 006F ¢ 4
0.5 "-é_'-" '.' .
- o 0.04f B2-EIRENE *, A
™ 0.02 code "oy
‘ . : 0.3 ;
0.3 -0.25
toroidal direction 0.2 0.00 ! | 1 1 1 1 1

0 2 4 6 8 10 12 14
Distance from the antenna surface

B Full-wave LH modelling performed with low T_0 (~4eV) and high TeO
(T.0~ 10eV)
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ELECTRIC FIELD MEASUREMENTS
DURING LHCD EXPERIMENTS




DENSITY PROFILES IN FRONT OF

THE LHCD ANTENNA

18

x 10
. : 2.5
Density profiles from X-mode
reflectometer in LHCD launcher 2|
X ) OIIS X-rlnode reﬂectometljy | rﬁ; 15 ||
---47931 - 5.5s = _ |
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gl “|Forces (PF) 1N
L L |I -
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(AR=5mm).g==2 | ¥ 7
2t 13/( W L ~2mm
9
0 =10 Expt
P -
50 o,
w/o
B RC measurements indicate that PF ,_Pond.Forces °
are over-estimated in most cases 0 0.1 0.2 0.3

n_(x=0) (10° m™)
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PONDEROMOTIVE FORCES ACT ON

A VERY NARROW PLASMA LAYER

Without Ponderomotive Forces

(Linear ne profile) With Ponderomotive Forces (PF)

2.57 —anz"m&l}; 25 —L=2x10°m
—--L =1.5x10"m ___Ln=1_5x10'3m
g e
> T,0=10eV
-
~ © x=2-7¢m
[
a4 )
@ 15l Experiment
- > (1=5.55&9.55)
Is) _
. T.0=4eV
° x=4-9¢cm
1 . .
0 1 -2 128 -3 3
n_(x=10"m) (10¥ m™) n_(x=10"m) (10" m™)
B Egr measurements are more B Exr measurements confirm that PF
consistent with model assuming are over-estimated in most cases
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ELECTRIC FIELD MEASUREMENT

POWER SCALING

(107m-3)
n,0=1.5

e All Modules Powered

e Module 1 No Power

,,,,

- .
- .
-
-—
-
-

<Erp> (kviem

0 0.5 i .5
Coupled C3 Upper Module Power (MW)

-0.4 -0.35 -0.3 -0.2
toroidal direction

@ Expected scaling of Egxp with P (P, 4%2)

B No effect of the power launched by the edge waveguides (Mod.1) on <Eg>
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ELECTRIC FIELD MEASUREMENT
& WAVE PROPAGATION

N, < 0 (secondary lobe)

—L2mm  Thisg

e e L =1.5mm .
2 . experi ment
"'é T 0=4eV G _
= / Modeling
S 0.9 :
é T 0-10eV
5 0.8
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g e
=
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% Upgraded g T 0=4eV]
£ diagnostic
= (2016)

0 1 2 3
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I For low edge Te, rays from Module 1 do not contripute 10 <ktgg

@ Significant effect of Mod.1 on <E,> expected on the mairi N, {0b€ Side
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CONCLUSION & OUTLOOK

UAK RIDGE NC STATE
National Laboratory  |JN|VERSITY

B RF electric field near an LHCD antenna is measured by Stark effect

spectroscopy in Tore Supra successfully.
» Wave polarization unambiguously identified from physics-based modeling of

the spectral lines.
» Amplitude consistent with density profile measurements.
» Good quantitative agreement with full wave modeling.

» Ponderomotive forces do not act on a radial distance > 2-3mm

B Improved diagnostic (with He injection) will be implemented in WEST
(WEST - Tungsten (W) Environment in Steady-state Tokamak, at CEA) and
MPEX (Material Plasma Exposure eXperiment, at ORNL) facilities.

B Generalization to measure fields near ICRF antennas
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EXTRA SLIDES
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NON-LINEAR INTERACTION BETWEEN

LH WAVE & SCRAPE-OFF LAYER
&OAK RIDGE NC STATE

National Laboratory  |JN|VERSITY

Cesario, PRL0O4

JET shot 53429

5 6
10 "
67 _ i1 Antenna spectrum
—quiescent plasma .t
Br —density fluctuating SOL X
.;' 4 r -:Irrf!\'».,
4 . © o "I'. i
2 Madi, EPS14, = 1 ™\
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2 g ] LH spectrum
T 2f a i‘r "E propagating including
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1t | ;
i J #
L
0 I SR
1 2 3 4 5 0l K Tt e
E: 2 3
Ny sideband
B Wave scattering on density B Parametric Decay

fluctuations

== Broadening of the N// spectrum
== Reduced CD efficiency
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WEST’S RELEVANT SPECTROSCOPIC TOOLS

WILL HAVE: Optical access (from high-
field side !) of antenna structures
* Optics optimized for W I lines
« All part of beseline diagnostic set
SHOULD HAVE:
« Experimental plans to relate
measurements to rf-sheath

« PROPOSING TO HAVE: “Thermal” BES .
* Ne, Te profiles (SOL->Pedestal)
« X-point and Upstream
« SHOULD ALSO HAVE:
 Extra system at antenna PFC
> Ne(r), Te(r) at antenna
» SOL modification studies —
» Tie in with Exe studies x
« (DIAS project extension) u
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PASSIVE STARK-EFFECT SPECTROSCOPY

%OAK RIDGE NC STATE
National Laboratory UNIVERSITY Raw Da Spectral L|ne Profile

S

I buperthermal Emlssmn A { + SRS
0.2 - N to PPCF

Stark effect

6%54 6556 6558 6560 6562 6564 6566 6568 6570 6572
Wavelength (A)

B Inboard (High B) and Outboard (Low B) Zeeman splitting can be
discriminated

B Stark effect superimposed to Zeeman central line => modelling needed
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CONCLUSION

UAK RIDGE NC STATE
National Laboratory  |JN|VERSITY

B The RF electric field near a LHCD antenna has been measured by Stark
effect spectroscopy. Wave polarization is unambiguously found from
physics-based modeling of the spectral lines.

B Amplitude of Ex¢ is consistent with density profile measurements.

I Er-data are in better agreement with full wave modeling of the electric field
when a low Te (~4 eV) near the antenna is considered.

I E,-data indicates that ponderomotive forces do not act on a radial distance
exceeding 2-3mm consistently with LH coupling (and PF modeling).

B Further constraints on edge ne & Te are provided when changing the
power feeding of the antenna.
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OUTLOOK

%OAK RIDGE NC STATE
National Laboratory UNI|VERSITY

B Diagnostic will be re-directed on WEST with improved spatial resolution to
view the main lobe of the N// spectrum
. Higher Electric Field => More accurate measurement.
. Direct measurement of the wave directivity (=> CD efficiency).

B Active Stark-effect spectroscopy (with He injection) is also envisaged to

further improve the diagnostic.

B R & D is planned on the MPEX facility (ORNL) to assess the feasibility of

measuring the rectified potential in front of an ICRH antenna.
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