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Synergistic motivations for MST research 

Advance!
RFP and Plasma 
Control Physics! Advance Predictive 

Capability of Fusion 
Science!

Discover Basic!
Plasma Science!



Fusion potential of RFP stems from concentration of���
|B| within the plasma and small externally applied Bt 

•  |B| largely from plasma current 

•  Large plasma current density 
–  Ohmic ignition may be possible 
–  Large Greenwald limit 

•  Large demonstrated β R0	
R0– a	
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RFP a strong contributor to toroidal fusion science 

•  Physics closely related to tokamak and stellarator 
•  But RFP accesses unique parameter space 

•  Contribute to validation of key physics models and codes 
•  Contribute to development of advanced diagnostics 



Outline 

•  Results connected to: 
 
J(r) control à micro-instability, high ne, high β	

 
3D helical equilibria à theory, control, reconstruction 
 
Fast ion physics à internal fluctuation data, mode coupling, 
fast-ion runaway 



A bit about the MST (Madison Symmetric Torus) 

•  R = 1.5 m 
•  a = 0.52 m 

•  Toroidally 
axisymmetric 

•  Advanced 
diagnostics 



q < 1, many resonant surfaces for tearing modes 
q 

= 
rB

t/R
B p

!



Results connected to J(r) control 



Reminder:  J(r) control --> tokamak-like confinement 

•  Pulsed parallel current drive 
(PPCD) – inductive, transient 

•  ne ~ (0.1-0.2)nGW 
•  Tearing modes (macro-

instabilities) suppressed 

•  Micro-instability becomes 
important? 
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Micro-scale ñ measured via far forward scattering 

•  Broadband fluctuation 
reduction with PPCD 

•  Except around 100 kHz 

FIG. 1. Measured with a forward-scattering laser 
diagnostic, density fluctuations around  r/a = 0.72 
in standard and PPCD plasmas. 
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∇n-driven TEM likely source of micro-instability 

•  GENE predicts positive 
linear growth rate for TEM 

•  kφρs ~ 0.2 comparable to 
measurement 

 
 
•  ñ increases with local ∇n 
 

Preliminary data 
0.0! 0.08!Density gradient (1021 m-4)!
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OV/5-1: P. Terry, “Overview of Gyrokinetic 
Studies on Electromagnetic Turbulence” 



With pellet fueling of PPCD plasmas, Greenwald limit surpassed 

•  Non-disruptive 

|--- PPCD ----------> 



Large β with pellet injection, but β saturates 

•  β limit in RFP not previously 
established 

•  Poh increases with density 
(3x increase here) 

•  Magnetic fluctuations also 
increase with density 

•  But without disruptions 
 
•  β limit “soft” 
•  Thus far, largest total β ~ 

28% (thermal+non-thermal) 
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Results connected to 3D helical equilibria 



New theory for emergence and lifetime of 3D state 

•  3D state emergence (at 
high Ip) & sustainment 
not entirely understood 

•  New model treats 
dominant mode as 
coherent vortex 

•  Sustained by magnetic, 
velocity shear 

•  Model captures expt. 
dynamics 

EXP 

MODEL 



MST well suited for diagnosis of 3D structure 

•  But structure orientation not always ideal... 



m = 1 RMP controls structure orientation 

•  Large single mode 
leads to locking due to 
eddy current in shell 

 
•  Tailored RMP 

waveform controls 
locking phase 



V3FIT successfully applied for MST 

Includes polarimetry, 
recently added as 
constraint 

•  Needed tool for 3D 
reconstruction in RFP 

•  Opportunity to test and 
advance stellarator tool 

 



Results connected to fast ion physics 



Tangential NBI a new control tool for RFP 

NBI Parameter! Specification!
Beam energy! 10-25 keV!
Beam power! 1 MW max!
Pulse length! 20 ms!
Composition! 95% H, 5% D!
Energy fraction!
(E:E/2E/3:E/18)! 86%:10%:2%:2%!



Internal    from EP mode measured for first time !b

NBI-induced mode (m=1, n=5) 

Global tearing mode 



Three-wave coupling occurs between NBI-driven modes 

•  Enhanced fast ion loss rate observed during such coupling 



Fast ion runaway at global reconnection events 

•  From neutral particle 
analyzer 

•  E// due to global inductive 
change 

•  Increase in fast ion energy 
depends on initial energy 

•  Behavior as expected for 
runaway ions (accelerating 
field stronger than frictional 
drag) 0 10 20 30
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Summary 

•  Micro-instability (TEM) in low-density PPCD plasmas 
•  ne > nGW with pellet injection, without disruption 
•  High β, with transport-based, soft limit 
 
•  New theory to explain 3D equilibria 
•  Control of structure orientation with RMP 
•  Reconstruction with V3FIT 
 
•  Measured internal magnetic fluctuation structure of EP mode 
•  Three-wave coupling 
•  Runaway of fast ions at reconnection events 


