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Runaway 

electrons 

Current 

quench (CQ) 

Thermal 

quench (TQ) 

Disruptions 

• Major operational concern for ITER and future machines 

• 3 types of consequences: 

– Heat loads: conduction, radiation  TQ,CQ 

– Electromagnetic forces: halo/eddy currents  CQ 

– Runaway electrons (MAs @ 5 to 20 MeV)  CQ 

 

 

 

 

Example of runaway impact on carbon 

PFCs on Tore Supra 

• Massive Gas Injection: one of the disruption mitigation 

methods foreseen on ITER. Goals: 

– Radiating the plasma thermal energy 

– Controlling the duration of the current quench 

– Prevent/suppress runaway electrons  

 

• Questions to be addressed: 

– Radiation efficiency, radiation asymmetries 

– Ability to suppress runaway electrons in a metal environment 
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Experimental background - MGI 

• Heat loads and radiation - previous observations at JET-ILW: 

– Lower radiation during current quench due to absence of carbon [1] 

 Slower current quenches  larger halo currents  larger forces 

– Low radiation  larger conducted power: risk for PFC during VDEs 

– MGI with 90%D2+10%Ar restores some radiation during CQ [2] 

– MGI radiation efficiency decreases with increasing Wth 

 

• Questions to be addressed: 

– Can radiation efficiency decrease be compensated by other injection scenarios? 

• By increasing argon fraction? Pressure? 

– How large are radiation asymmetries? 

• Efficiency of MGI on incoming disruptions with a locked mode 

[1] P. De Vries et al., Plasma Phys. Control Fusion. 54 (2012) 

[2] M. Lehnen et al., Nucl. Fusion 53 (2013) 
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MGI efficiency decreases with fth 

• MGI aims at radiating the thermal and magnetic energy (Wth+Wmag) 

• Most common mixture : 90%D2+10%Ar 

– Combines fast delivery of D2 and radiation capabilities of argon 

– D2 only: radiation efficiency down to 40-50% 

• At higher thermal energy fraction (fth = Wth/Wmag): decrease of radiation 

efficiency down to 70% 

 • Increasing the argon fraction >10%: no increase of 

radiation efficiency 

• Decrease the argon fraction: first signs of 

efficiency decrease only at 1% Argon lower 

pressure 

 Decrease of radiation efficiency unrecoverable 

by increasing argon fraction 



C. Reux et al. 7            25th IAEA FEC conference – St-Petersburg    16/10/2014 

Radiation asymmetries related to locked mode 

phasing  

• MGI may lead to localized radiation peaking 

radiation efficiency decrease? 

• Injection on real disruptions with locked modes may 

increase peaking  

• Mode lock triggered by Error Field Correction Coils (EFCC) 

• Radiation measured with two bolometer arrays -135° and 

90° away from the valve 

 

• Radiated energy difference changes sign with mode 

phasing 

• Up to 20% deviation to uniformity 

Radiation asymmetries depend on 

mode lock phasing 
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Experimental background - runaways 

• Runaway electrons - previous observations at JET-ILW: 

– Almost no runaways during spontaneous disruptions (>6000 discharges) 

– Slower current quenches  lower accelerating field 

– Argon MGI is still able to generate 5 to 15 MeV runaways [1] 

 

• Questions to be addressed: 

– What are the generation conditions for runaways at JET-ILW 

• Argon fraction in MGI? 

• Link to physics parameters? 

– Can runaways be suppressed by MGI? 

– Characterize runaway impacts on PFC 

 

 

 

[1] C. Reux et al., Proceedings of PSI 2014, accepted for publication in JNM, 2014 
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RE generation dependencies 

• RE generation using D2+Ar MGI to determine the 

operational domain 

• Domain boundary similar between JET-C and JET-ILW 

• Runaway energies 5 to 15 MeV (see V. Plyusnin 

poster P5-23, today) 

• Known runaway generation dependencies: 

– Accelerating electric field Ea 

– Critical electric field 

– Toroidal field Bt 

• Divertor pulses: clear domain in (Ea/Ec, Bt) space  

• At equal Ea/Ec, higher RE currents with limiter pulses 

 

 

 

 

RE/no-RE 

boundary 

for divertor 

shapes 

Strong dependence of RE generation 

on vertical stability 
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Runaway beam early mitigation: successful 

if early enough 

• Scenario: trigger runaway beam with DMV1 

100% Argon  

 ~0.7 MA 50 ms beam 

• Experiment:  fire DMV2 high pressure D2 at 

different times 

• Result: 

– No runaways if DMV2 gas arrives before TQ 
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Runaway beam early mitigation: successful 

if early enough 

• Scenario: trigger runaway beam with DMV1 

100% Argon  

 ~0.7 MA 50 ms beam 

• Experiment:  fire DMV2 high pressure D2 at 

different times 

• Result: 

– No runaways if DMV2 gas arrives before TQ 

– Fully unmitigated runaway beam if DMV2 gas 

arrives after TQ 

• dIp/dt, accelerating electric field Ea almost 

identical during early CQ  

• Density rise before TQ very similar 

 DMV2 D2 gas mixing regime differs 

before/after TQ 

 

Suppression of an incoming runaway beam 

feasible if done before TQ 

~1.7 ms! 
Just before TQ:  

no RE 

Just after: TQ: 

850 kA RE plateau 
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Runaway beam late mitigation: no significant effect 

• Same runaway beam scenario (DMV1 100% 

argon low pressure) 

• High-Z injection during the runaway beam 

(argon, krypton) 

 

• No significant effect on runaway beam 

current, HXR/neutrons rate, plasma electron 

density and vertical motion 

– Runaway current slow decay is already 

present in unmitigated cases (RE/DMV1 gas 

interaction) 

 

• Transient increase of SXR radiation and 

visible light 

 

 

(relative measurement only) 

DMV2 Argon 12.7 bar.l  
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Mitigation gas interacts with runaway beam 

• Interaction between DMV2 gas and 

RE beam or CQ cold plasma 

• Possible explanations on the 

absence of efficiency: 

– Background neutral gas pressure 

(DMV1: 3.5 bar.l, DMV2: 7.2 to  

>20 bar.l Ar, Kr, Xe) 

– Background plasma pressure 

– RE energy too low for significant 

braking effect 

• To be compared with DIII-D, Tore 

Supra, AUG results 

 

 

 

Suppression of an already 

accelerated beam difficult 
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Runaway impact on PFCs: asymmetries 

• Mild impacts at 50-100 kA reported in [1] 

– Toroidally periodic impacts on the upper dump 

plate 

– Melting unlikely 

• Latest observations:  

– 770 kA RE beam at termination 

– Impact on Inner Wall Guard Limiter 

 

[1] C. Reux et al., Proceedings of PSI 2014 



C. Reux et al. 16            25th IAEA FEC conference – St-Petersburg    16/10/2014 

Runaway impact on PFCs: asymmetries 

• Mild impacts at 50-100 kA reported in [1] 

– Toroidally periodic impacts on the upper dump 

plate 

– Melting unlikely 

• Latest observations:  

– 770 kA RE beam at termination 

– Impact on Inner Wall Guard Limiter 

 

[1] C. Reux et al., Proceedings of PSI 2014 
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Significant melting 
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Surface alteration only 

No damage 

No data 
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Runaway interaction with the wall: dynamics 

Runaway beams in the MA 

range: significant melting 

• Impact from a failed mitigation attempt 

(12.7 bar.l) 

• Slow upward-inward drift of the beam 

 

• 0.77 MA to 1.0 MA  ~1400°C on 

beryllium tile 

• Interaction with the wall starts before 

the final current drop 

• Final current drop when qedge=2 is 

reached  
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Conclusions 

 Conclusions 

 Radiation efficiency of MGI decreases with increasing fth 

 Toroidal asymmetries in radiation 

 

 RE generation strong dependence on vertical shaping 

 Mitigation of RE beam feasible before thermal quench, difficult after 

 Unmitigated 1MA beam at a few MeV: beryllium melting 

 

 Perspectives 

 Continue mitigation experiments 

 Use the data to build extrapolation to ITER 

 Enabling research programme for RE modelling (Fokker-Planck codes) 

 Investigate further the link between vertical shaping and RE generation 

 Develop alternative control schemes 
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Additionnal slides 
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Radiation asymmetries - 2 

• Increase of the radiated power ratio Pvert/Phoriz during 

the first stage of the disruption: pre-disruption, 

thermal quench and early current quench 

 

• Total radiated energy difference between two arrays 

changes sign when EFCC phase changes 

 

• Up to 20% deviation to uniformity 

 

 

Radiation asymmetries depend on 

mode lock phasing 
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Runaway electron behaviour 

• Runaway electron generation using D2+Ar 

MGI to determine the operational domain 

– Scan in argon fraction fAr and toroidal field Bt 

• Domain boundary (entry points) similar 

between JET-C and JET-ILW (slightlier earlier 

entry for JET-ILW) 

• Inside the runaway domain: higher currents 

for JET-ILW 

– Possibly due to different background density 

conditions at the end of the current quench 

(different outgassing from JET-ILW 
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RE/no-RE 

boundary 

for divertor 

shapes 

Runaway electron behaviour - 2 

• Operational domain has to be transcribed into physics 

parameters 

• Known runaway generation dependencies: 

– Accelerating electric field Ea: partly related to the current 

quench speed 

– Critical electric field (Dreicer and avalanche 

mechanisms) 𝐸𝑐 =
𝑛𝑒𝑒

3lnΛ

4𝜋𝜀2𝑚𝑒𝑐
2 

– Toroidal field Bt 

• With divertor pulses: clear domain in (Ea/Ec, Bt) space  

• At equal Ea/Ec, limiter pulses generate higher 

runaway currents 

 
Strong dependence of 

runaways on vertical position 
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Runaway generation physics 

• 2 main mechanisms for runaway generation 

• Primary generation : Dreicer mechanism : unconditional generation when 

accelerating electric field Ea above the Dreicer field ED 

 

 

 

– Runaway generation also happens above a critical field EC at a lower rate 

 

 

 

• Secondary generation: avalanche : thermal electrons are accelerated by 

collisions with runaway electrons. Requires seed electrons. Depends on Ec: 



C. Reux et al. 25            25th IAEA FEC conference – St-Petersburg    16/10/2014 

IRE =  240 kA : 

max(EHXR) = 12 

MeV 

IRE ~ 0 kA 

Max(EHXR) = 5.2 

MeV 

Runaway characteristics (1) 

• Runaway interaction with wall and background plasma: 

– Hard X-ray emission (HXR) 

• Indicator for runaway relative energies 

– Photoneutron production: 

• Indicator for total amount of runaway electrons 

 • At low runaway currents, maximum 

and mean HXR energy increase 

with increasing runaway current 
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Runaway characteristics (2) 

• Runaway energy spectrum deconvoluted from HXR measurements using 

the DeGaSum code [Shevelev_NF_13] 

 

 

 

#85020 

IRE ~ 50 kA 

#85948 

IRE ~ 475 kA 

HXR spectra 

Runaway spectra 

Maximum runaway energy 

so far: 20 MeV at IRE = 

475 kA, consistent with 

theories 
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Full critical field calculation 

• Second main parameter for runaway generation: critical field EC 

 

 

• No density measurement during middle of current quench (interferometer 

beam refraction) 

 

Invalid 

window 

 

• Two critical field estimates: 

– Start of current quench (last 

density point) 

– End of current quench (first density 

point) 

 

• Used to compute Ea/EC ratio 
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Differences JET-C and JET-ILW 

• Discharges at fAr = 100%: direct JET-C/JET-ILW comparisons :  

– Same plasma parameters : density, divertor configuration 

– Same injection parameters: pure Argon, full pressure in DMV 

• In both JET-C and JET-ILW, runaway appear around 1.5MA/1.2T 

• Inside runaway domain IRE,ILW >IRE,C 

Ea (V/m) 

Ip (104 A) 

More runaways in JET-ILW in high Ea/EC, high Bt regimes ? 
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Differences JET-C and JET-ILW 

• Differences JET-C/JET-ILW 

– CQ temperature? 

– Magnetic turbulence? 

– Density: post-CQ density 

higher in JET-C cases 

 

• Different density behaviour due 

to JET-ILW? 

– Different impurity content 

leading to different CQ 

temperature? 

– Different wall outgassing 

conditions? 

 

 

 

 

 

Density at end of CQ different in ILW: 

impact on runaway generation? 

~135 kA 



C. Reux et al. 30            25th IAEA FEC conference – St-Petersburg    16/10/2014 

Runaway impact observations 

• Runaway electron beams in divertor configuration usually impact the upper 

dump plate at JET (vertical instability) 

• Impact seen by infrared camera (20 ms time resolution) on two 

representative pulses :#85020 (~50 kA) and #85021 (~100 kA) 
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Runaway impact observations 

• Footprint on upper dump-plate: 

– Localized hots spots on dump plate ribs 

– Toroidally periodic 

– Poloidally localized 

 

• Apparent poloidal size ~ 32 mm +/- 8 

mm, toroidal length 10+/-5 mm 

 

• Consistent with upwards movement of 

plasma centroid 

 

 

441 

568.5 

696 

313.5 

186 

Runaways: localized impacts, 

small area 
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Cooling time simulations (1) 

• Low IR time resolution  peak temperature is subject to caution 

• Cooling phase long enough to be fully captured by the camera 

• Simulate tile cooling with a simple 1D heat diffusion model 

– Finite difference model, 1D slab 

– Beryllium constant thermal properties 

– No radiative cooling, no conductive heat loss between tile and carrier 

• Fit parameters : 

– Incident heat flux Q 

– Heat deposition depth d 
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Qi = 3.5 GW.m-2 

d = 1.4 mm 

Qi = 4.1 GW.m-2 

d = 2.5 mm 

Cooling time simulations (2) 

 

• Fit parameters tuned to match final temperature and initial cooling 

• 1 ms heat deposition time is assumed (neutron peak) 

• Deposition depth of 1.4 and 2.5 mm needed 

• Higher IRE on #85021 higher heat flux and deeper deposition  

 

 

 

 Volumic heat deposition on beryllium tiles 

• Results and fits for 85020 and 85021 
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Runaway absorption simulations (1) 

• More refined simulations carried out with the MEMOS/ENDEP suite of 

codes [Bazylev JNM 2014] 

• ENDEP: Monte-Carlo code treating the runaway electron absorption by wall 

material (3D realistic geometry) 

 

  
• Etr/Epar = 0.01 is assumed. Impact angle 

3°. Runaway energy spectra taken from 

deconvolutions shown earlier 

 

 Only part of the thermal and magnetic 

energy deposited in the tile : rest goes 

through. 

In-depth deposition 

 

 
 Volume deposition confirmed 
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Runaway absorption simulations (2) 

• Energy absorbed in the first 2 mm from tile apex : consistent with simple 

1D diffusion simulations 

• Photon energy spectrum recalculated by ENDEP: consistent with 

measured HXR spectrum. 

 

 
 Good consistency of simulations with measurements 
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Heat diffusion simulations (1) 

• MEMOS code: heat diffusion in 3D geometry, temperature-dependent 

thermal properties, melt-layer motion 

– Normalized heat deposition maps from ENDEP taken as input 

– Scan parameter: Heat flux: 10 to 120 GW.m-2: 10 to 120 MJ.m-2, 1 ms 

 

 
 

• Melting threshold ~ 100 MJ.m-2 

Not reached during experiments 

 

• Deposition dependent on tile 

geometry 
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Heat diffusion simulations (2) 

• Pincident = 50 MJ.m-2 closer to the actual measured surface temperature 

• Maximum temperature 1030K for 100 kA discharge, cooling phase in 

qualitative agreement with IR measurements 

 

 

 

 

 No melting for 50 kA and 100 kA 

beams at JET-ILW thanks to in-depth 

deposition 

• No melting for beryllium tiles at 

~50 and ~100 kA runaway beam 

with Emean = 12 MeV 

 

• Shallow melting might occur  with 

larger runaway currents. 
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ENDEP simulations (4) 

• For a single isolated tile : 

– Only 25% of the beam thermal energy is deposited  

– Less than 10% of the beam magnetic energy is lost in the tile 

– Spectrum is altered after passing through the tile : slightly recentered around 

mean value 

• The rest of the energy is supposed to hit the following tile in the dump plate. 

 

 
JET #85020 


