## Runaway electron generation with ITER-like Wall and Efficiency of Massive Gas Injection at JET

## 25<sup>th</sup> IAEA Fusion Energy Conference,

## St-Petersburg, Russia

<u>C. Reux</u>, R. Koslowski, V. Plyusnin, B. Alper, D. Alves, B. Bazylev, E. Belonohy, A. Boboc, S. Brezinsek, J. Decker, S. Devaux, P. Drewelow, P. de Vries, A. Fil, S. Gerasimov, L. Giacomelli, S. Jachmich, E.M. Khilkevitch, V. Kiptily, U. Kruezi, M. Lehnen, I. Lupelli, A. Manzanares, A. Martin de Aguilera, J. Mlynar, E. Nardon, E. Nilsson, V. Riccardo, F. Saint-Laurent, A.E. Shevelev, C. Sozzi and JET contributors

### 16<sup>th</sup> October 2014







## Disruptions



- Major operational concern for ITER and future machines
- 3 types of consequences:
  - Heat loads: conduction, radiation → TQ,CQ
  - − Electromagnetic forces: halo/eddy currents → CQ
  - Runaway electrons (MAs @ 5 to 20 MeV) → CQ
- **Massive Gas Injection**: one of the disruption mitigation methods foreseen on ITER. Goals:
  - Radiating the plasma thermal energy
  - Controlling the duration of the current quench
  - Prevent/suppress runaway electrons

2

- Questions to be addressed:
  - Radiation efficiency, radiation asymmetries
  - Ability to suppress runaway electrons in a metal environment

C. Reux et al.

25<sup>th</sup> IAEA FEC conference – St-Petersburg





Example of runaway impact on carbon PFCs on Tore Supra 16/10/2014







#### Introduction

Disruptions and MGI

### Efficiency of Massive Gas Injection

- Experimental background and questions to be addressed
- Radiation efficiency
- Radiation asymmetries
- Runaway electrons at JET-ILW
  - Experimental background and questions to be addressed
  - Dependencies with JET-ILW
  - Runaway beam mitigation
  - Runaway beam impact
- Conclusions and perspectives







#### Introduction

Disruptions and MGI

### Efficiency of Massive Gas Injection

- Experimental background and questions to be addressed
- Radiation efficiency
- Radiation asymmetries
- Runaway electrons at JET-ILW
  - Experimental background and questions to be addressed
  - Dependencies with JET-ILW
  - Runaway beam mitigation
  - Runaway beam impact
- Conclusions and perspectives





- Heat loads and radiation previous observations at JET-ILW:
  - Lower radiation during current quench due to absence of carbon [1]
    - →Slower current quenches → larger halo currents → larger forces
  - Low radiation → larger conducted power: risk for PFC during VDEs
  - MGI with  $90\%D_2+10\%Ar$  restores some radiation during CQ [2]
  - MGI radiation efficiency decreases with increasing W<sub>th</sub>
- Questions to be addressed:

5

- Can radiation efficiency decrease be compensated by other injection scenarios?
  - By increasing argon fraction? Pressure?
- How large are radiation asymmetries?
  - Efficiency of MGI on incoming disruptions with a locked mode

[1] P. De Vries et al., Plasma Phys. Control Fusion. 54 (2012) [2] M. Lehnen et al., Nucl. Fusion 53 (2013)

C. Reux et al.



# ○ EF**Je**↑



- MGI aims at radiating the thermal and magnetic energy  $(W_{th}+W_{mag})$
- Most common mixture : 90%D<sub>2</sub>+10%Ar
  - Combines fast delivery of  $D_2$  and radiation capabilities of argon
  - D<sub>2</sub> only: radiation efficiency down to 40-50%
- At higher thermal energy fraction (f<sub>th</sub> = W<sub>th</sub>/W<sub>mag</sub>): decrease of radiation efficiency down to 70%
- Increasing the argon fraction >10%: no increase of radiation efficiency
- Decrease the argon fraction: first signs of efficiency decrease only at 1% Argon lower pressure

6

Decrease of radiation efficiency unrecoverable by increasing argon fraction



C. Reux et al.

25<sup>th</sup> IAEA FEC conference – St-Petersburg



C. Reux et al.

#### **Radiation asymmetries related to locked mode** phasing



- MGI may lead to localized radiation peaking →radiation efficiency decrease?
- Injection on real disruptions with locked modes may increase peaking
- Mode lock triggered by Error Field Correction Coils (EFCC)
- Radiation measured with two bolometer arrays -135° and 90° away from the valve
- Radiated energy difference changes sign with mode phasing
- Up to 20% deviation to uniformity

Radiation asymmetries depend on mode lock phasing









- Introduction
  - Disruptions and MGI
- Efficiency of Massive Gas Injection
  - Experimental background and questions to be addressed
  - Radiation efficiency
  - Radiation asymmetries
- Runaway electrons at JET-ILW
  - Experimental background and questions to be addressed
  - Dependencies with JET-ILW
  - Runaway beam mitigation
  - Runaway beam impact
- Conclusions and perspectives





#### • Runaway electrons - previous observations at JET-ILW:

- Almost no runaways during spontaneous disruptions (>6000 discharges)
- Slower current quenches  $\rightarrow$  lower accelerating field
- Argon MGI is still able to generate 5 to 15 MeV runaways [1]
- Questions to be addressed:

9

- What are the generation conditions for runaways at JET-ILW
  - Argon fraction in MGI?
  - Link to physics parameters?
- Can runaways be suppressed by MGI?
- Characterize runaway impacts on PFC

[1] C. Reux et al., Proceedings of PSI 2014, accepted for publication in JNM, 2014

C. Reux et al.





#### RE generation using D<sub>2</sub>+Ar MGI to determine the operational domain

- Domain boundary similar between JET-C and JET-ILW •
- Runaway energies 5 to 15 MeV (see V. Plyusnin • poster P5-23, today)
- Known runaway generation dependencies: •
  - Accelerating electric field E<sub>a</sub>
  - Critical electric field  $E_c = \frac{n_e e^3 \ln \Lambda}{4\pi \epsilon_o^2 m_e c^2}$

10

Toroidal field B<sub>t</sub>

C. Reux et al.

- Divertor pulses: clear domain in  $(E_a/E_c, B_t)$  space
- At equal  $E_a/E_c$ , higher RE currents with limiter pulses •

Strong dependence of RE generation on vertical stability





Runaway beam early mitigation: successful if early enough

25<sup>th</sup> IAEA FEC conference – St-Petersburg



- Scenario: trigger runaway beam with DMV1 100% Argon
  - → ~0.7 MA 50 ms beam
- Experiment: fire DMV2 high pressure D<sub>2</sub> at different times

11

• Result:

C. Reux et al.

No runaways if DMV2 gas arrives before TQ





#### Runaway beam early mitigation: successful if early enough



- Scenario: trigger runaway beam with DMV1 100% Argon
  - → ~0.7 MA 50 ms beam
- Experiment: fire DMV2 high pressure D<sub>2</sub> at different times
- Result:
  - No runaways if DMV2 gas arrives before TQ
  - Fully unmitigated runaway beam if DMV2 gas arrives after TQ
- dl<sub>p</sub>/dt, accelerating electric field E<sub>a</sub> almost identical during early CQ

12

- Density rise before TQ very similar
- ➔ DMV2 D<sub>2</sub> gas mixing regime differs before/after TQ



feasible if done before TQ

16/10/2014

C. Reux et al.

## Fight Runaway beam late mitigation: no significant effect



- Same runaway beam scenario (DMV1 100% argon low pressure)
- High-Z injection during the runaway beam (argon, krypton)
- No significant effect on runaway beam current, HXR/neutrons rate, plasma electron density and vertical motion
  - Runaway current slow decay is already present in unmitigated cases (RE/DMV1 gas interaction)



13

C. Reux et al.

<sup>16/10/2014</sup> 



### Mitigation gas interacts with runaway beam





14

Suppression of an already accelerated beam difficult

- Interaction between DMV2 gas and RE beam or CQ cold plasma
- Possible explanations on the absence of efficiency:
  - Background neutral gas pressure (DMV1: 3.5 bar.l, DMV2: 7.2 to >20 bar.l Ar, Kr, Xe)
  - Background plasma pressure
  - RE energy too low for significant braking effect

16/10/2014

 To be compared with DIII-D, Tore Supra, AUG results

C. Reux et al.

# **EFJEA** Runaway impact on PFCs: asymmetries

- Mild impacts at 50-100 kA reported in [1]
  - Toroidally periodic impacts on the upper dump plate
  - Melting unlikely
- Latest observations:

C. Reux et al.

- 770 kA RE beam at termination
- Impact on Inner Wall Guard Limiter



[1] C. Reux et al., Proceedings of PSI 2014

15



cea

# **EFJET** Runaway impact on PFCs: asymmetries

- . . . . .
- Mild impacts at 50-100 kA reported in [1]
  - Toroidally periodic impacts on the upper dump plate
  - Melting unlikely
- Latest observations:

C. Reux et al.

- 770 kA RE beam at termination
- Impact on Inner Wall Guard Limiter



25<sup>th</sup> IAEA FEC conference – St-Petersburg

[1] C. Reux et al., Proceedings of PSI 2014

16









17

- Impact from a failed mitigation attempt (12.7 bar.l)
- Slow upward-inward drift of the beam
- 0.77 MA to 1.0 MA → ~1400°C on beryllium tile
- Interaction with the wall starts before the final current drop
- Final current drop when q<sub>edge</sub>=2 is reached

Runaway beams in the MA range: significant melting

16/10/2014

C. Reux et al.





#### Conclusions

- Radiation efficiency of MGI decreases with increasing f<sub>th</sub>
- Toroidal asymmetries in radiation
- RE generation strong dependence on vertical shaping
- > Mitigation of RE beam feasible before thermal quench, difficult after
- Unmitigated 1MA beam at a few MeV: beryllium melting

### Perspectives

- Continue mitigation experiments
- Use the data to build extrapolation to ITER
  - > Enabling research programme for RE modelling (Fokker-Planck codes)
- Investigate further the link between vertical shaping and RE generation
- Develop alternative control schemes

C. Reux et al.

18













Additionnal slides



20









21

- Increase of the radiated power ratio P<sub>vert</sub>/P<sub>horiz</sub> during the first stage of the disruption: pre-disruption, thermal quench and early current quench
- Total radiated energy difference between two arrays changes sign when EFCC phase changes
- Up to 20% deviation to uniformity

Radiation asymmetries depend on mode lock phasing

C. Reux et al.



## **Runaway electron behaviour**



- Runaway electron generation using D<sub>2</sub>+Ar MGI to determine the operational domain
  - Scan in argon fraction  $f_{Ar}$  and toroidal field  $B_t$
- Domain boundary (entry points) similar between JET-C and JET-ILW (slightlier earlier entry for JET-ILW)
- Inside the runaway domain: higher currents for JET-ILW

22

 Possibly due to different background density conditions at the end of the current quench (different outgassing from JET-ILW





25<sup>th</sup> IAEA FEC conference – St-Petersburg



- Operational domain has to be transcribed into physics parameters
- Known runaway generation dependencies:
  - Accelerating electric field E<sub>a</sub>: partly related to the current quench speed
  - Critical electric field (Dreicer and avalanche mechanisms)  $E_c = \frac{n_e e^3 \ln \Lambda}{4\pi \varepsilon^2 m_e c^2}$
  - Toroidal field B<sub>t</sub>

C. Reux et al.

- With divertor pulses: clear domain in  $(E_a/E_c, B_t)$  space
- At equal E<sub>a</sub>/E<sub>c</sub>, limiter pulses generate higher runaway currents

Strong dependence of runaways on vertical position

23







- 2 main mechanisms for runaway generation
- Primary generation : Dreicer mechanism : unconditional generation when accelerating electric field  $E_a$  above the Dreicer field  $E_D$

$$E_D = \frac{n_e e^3 \ln \Lambda}{4\pi\epsilon_0^2 m_e v_e^2} = \frac{n_e e^3 \ln \Lambda}{4\pi\epsilon_0^2 T_e}$$

Runaway generation also happens above a critical field E<sub>c</sub> at a lower rate

$$E_c = \frac{n_e e^3 \ln \Lambda}{4\pi \epsilon_0^2 m_e c^2}$$

 Secondary generation: avalanche : thermal electrons are accelerated by collisions with runaway electrons. Requires seed electrons. Depends on E<sub>c</sub>:

$$\frac{dn_r}{dt} \simeq \sqrt{\frac{\pi}{2}} \frac{(E/E_c - 1)}{3\tau \ln \Lambda} n_r$$

C. Reux et al.



C. Reux et al.

25<sup>th</sup> IAEA FEC conference – St-Petersburg



- Runaway interaction with wall and background plasma:
  - Hard X-ray emission (HXR)
    - Indicator for runaway relative energies
  - Photoneutron production:
    - Indicator for total amount of runaway electrons
- At low runaway currents, maximum and mean HXR energy increase with increasing runaway current

25

I<sub>RE</sub> = 240 kA : max(E<sub>HXR</sub>) = 12 MeV





- Cea
- Runaway energy spectrum deconvoluted from HXR measurements using the DeGaSum code [Shevelev\_NF\_13]





- Second main parameter for runaway generation: critical field  $E_C$  $E_c = \frac{n_e e^3 \ln \Lambda}{4\pi \epsilon_0^2 m_e c^2}$
- No density measurement during middle of current quench (interferometer beam refraction)
- Two critical field estimates:
  - Start of current quench (last density point)
  - End of current quench (first density point)
- Used to compute E<sub>a</sub>/E<sub>c</sub> ratio







- Discharges at  $f_{Ar} = 100\%$ : direct JET-C/JET-ILW comparisons :
  - Same plasma parameters : density, divertor configuration
  - Same injection parameters: pure Argon, full pressure in DMV
- In both JET-C and JET-ILW, runaway appear around 1.5MA/1.2T





C. Reux et al.



16/10/2014

- Differences JET-C/JET-ILW
  - CQ temperature?
  - Magnetic turbulence?
  - Density: post-CQ density higher in JET-C cases
- Different density behaviour due to JET-ILW?
  - Different impurity content leading to different CQ temperature?
  - Different wall outgassing conditions?

Density at end of CQ different in ILW: impact on runaway generation?

29







- Runaway electron beams in divertor configuration usually impact the upper dump plate at JET (vertical instability)
- Impact seen by infrared camera (20 ms time resolution) on two representative pulses :#85020 (~50 kA) and #85021 (~100 kA)



25<sup>th</sup> IAEA FEC conference – St-Petersburg





- Footprint on upper dump-plate:
  - Localized hots spots on dump plate ribs
  - Toroidally periodic
  - Poloidally localized
- Apparent poloidal size ~ 32 mm +/- 8 mm, toroidal length 10+/-5 mm
- Consistent with upwards movement of plasma centroid

Runaways: localized impacts, small area







- Low IR time resolution → peak temperature is subject to caution
- Cooling phase long enough to be fully captured by the camera
- Simulate tile cooling with a simple 1D heat diffusion model
  - Finite difference model, 1D slab
  - Beryllium constant thermal properties
  - No radiative cooling, no conductive heat loss between tile and carrier
- Fit parameters :
  - Incident heat flux Q
  - Heat deposition depth d

32





#### C. Reux et al.

#### 25<sup>th</sup> IAEA FEC conference – St-Petersburg





#### Results and fits for 85020 and 85021



- Fit parameters tuned to match final temperature and initial cooling
- 1 ms heat deposition time is assumed (neutron peak)
- Deposition depth of 1.4 and 2.5 mm needed
- Higher I<sub>RE</sub> on #85021 → higher heat flux and deeper deposition
  → Volumic heat deposition on beryllium tiles

C. Reux et al.



cea

- More refined simulations carried out with the MEMOS/ENDEP suite of codes [Bazylev JNM 2014]
- ENDEP: Monte-Carlo code treating the runaway electron absorption by wall material (3D realistic geometry)



- $E_{tr}/E_{par} = 0.01$  is assumed. Impact angle 3°. Runaway energy spectra taken from deconvolutions shown earlier
- ➔ Only part of the thermal and magnetic energy deposited in the tile : rest goes through.
- ➔In-depth deposition

➔ Volume deposition confirmed





- Energy absorbed in the first 2 mm from tile apex : consistent with simple 1D diffusion simulations
- Photon energy spectrum recalculated by ENDEP: consistent with measured HXR spectrum.

→ Good consistency of simulations with measurements

C. Reux et al.

35

cea





- MEMOS code: heat diffusion in 3D geometry, temperature-dependent thermal properties, melt-layer motion
  - Normalized heat deposition maps from ENDEP taken as input
  - Scan parameter: Heat flux: 10 to 120 GW.m<sup>-2</sup>: 10 to 120 MJ.m<sup>-2</sup>, 1 ms



- Melting threshold ~ 100 MJ.m<sup>-2</sup>
  Not reached during experiments
- Deposition dependent on tile geometry





- $P_{incident} = 50 \text{ MJ}.\text{m}^{-2}$  closer to the actual measured surface temperature
- Maximum temperature 1030K for 100 kA discharge, cooling phase in qualitative agreement with IR measurements



37

- No melting for beryllium tiles at ~50 and ~100 kA runaway beam with E<sub>mean</sub> = 12 MeV
- Shallow melting might occur with larger runaway currents.

➔ No melting for 50 kA and 100 kA beams at JET-ILW thanks to in-depth deposition

16/10/2014

C. Reux et al.





• For a single isolated tile :

- Only 25% of the beam thermal energy is deposited
- Less than 10% of the beam magnetic energy is lost in the tile
- Spectrum is altered after passing through the tile : slightly recentered around mean value
- The rest of the energy is supposed to hit the following tile in the dump plate.

