

SUMMARY SESSION

EX/C Magnetic Confinement experiments (Confinement)EX/D Magnetic Confinement Experiments: Plasma-material interactionsPPC-Plasma Overall Performance and Control

I. CORE TRANSPORT II. EDGE TRANSPORT III. PLASMA-WALL IV. IMPURITY/PARTICLE TRANSPORT V. OPERATIONAL LIMITS VI. PLASMA PERFORMANCE AND INTEGRATION

Carlos Hidalgo Laboratorio Nacional de Fusión, CIEMAT, Spain

	CORE TRANSPORT	0
EMPIRICAL ACTUATORS ✓ HEATING ✓ ROTATION ✓ MAGNETIC TOPOLOGY ✓ FUELLING	Efficient in existing devices Limited in next step devices Pellet [EXC186 Valovic MAST]	
<section-header></section-header>	 Flux-gradient, heating and transport [EXP39 Yoshida JT-60U], [EXC543 Anderson HSX], [EXP237 Inagaki LHD], [EXP414 Vershkov T-10] / [EXC421 Razumova] / [70/506 Ren NCTX] / [85/605 Vermare TS] / [EXC321 Challis JET], [EXC481 Neudatchin T-10] / [EXC656 Ernst DIIID],high density operation [EXC33 Mizuuchi H-J], [EXC577 Hong KSTAR] Momentum transport [EXC590 Ohsima H-J] [EXC443 Zhao J-TEXT mover RMPs], [EXC138 Lee KSTAR], [EXC284 Xu TEXTOR], [EXC393 Shi KSTAR], [EXC483 Tala AUG], [EXC306 Kobayashi H-J], [EXC406 Lee KSTAR], [EXC526 Severo TCABR], [EXC581 Na KSTAR], [EXC522 McKee DIIID], [EXC101 Lee KSTAR] Code validation [EXC112 Porte TCV] / [EXC121 Field MAST] / [EXC249 Mordijck DIIID] / [EXC317 Stroth exp vs GK] / [EXC428 Altukhov FT-2] / [83/585 Sabot TEM] / [EXC648 Howard AlcatorCmod] Te Critical Gradient [EXC278 Smith DIIID], EXC418 Yokoyama LHD] 	

TRANSPORT in high beta regimes, an echo for the fundamental unity and connectedness of fusion plasmas

Weak confinement degradation with power in high β plasmas due to increase in pedestal pressure and pressure peaking (by collisionality and suprathermal pressure [TH324 Garcia]).

[EXC321 Challis JET]

laboratorio

Naciona Fusión

TRANSPORT: flux-gradient relation

Non-local transport / turbulence spreading (EXC506 Ren NSTX)

aboratorio

Nacional

Dynamic method to study turbulence and turbulent transport, showing hysteresis in the flux-gradient relation [EXC237 Inagaki LHD]

Quantifying and understanding the level of profile stiffness in the plasma core in reactor relevant conditions (high beta, fast particle effects) is an outstanding issue with promissing results 4/31

TRANSPORT, physics understanding and empirical actuators (ECRH)

transport by ECRH and TEM [EXC656 Ernst DIIID]

ECRH Heating, transport and rotation [EXC39 Yoshida JT-60U]

aboratorio

Nacional Fusión

MOMENTUM TRANSPORT: driving / damping mechanisms

LOC-SOC transition occurs but no reversal in core rotation is detected. Dependency w.r.t collisionality is observed [EXC581 Na KSTAR].

Reduction in electron density with ECRH and transition from ITG to TEM without a reversal in toroidal rotation [EXC249 Mordijck DIIID]

aboratorio

Role of radially sheared Er × B flows on residual stress [EXC284 Xu TEXTOR] NC transport and intrinsic rotation [EXD374 Battaglia DIIID]

CODE VALIDATION: Great challenge due to the existence of multiple plasma scales

150

200

GK (GENE) validation using advanced fluctuation diagnostics AUG [EXC317 Stroth]

Temperature fluctuatiom decreases as edge triangularity goes from positive to negative. Full global nonlinear simulations are required [EXC112 Porte TCV].

100

Frequency (kHz)

25

10

-5

n

02 20 15

CPSD dB

 $\delta = 0.34 : \rho_{vol} = 0.4$

50

 $\delta = -0.34 : \rho_{vol} = 0.4$

Ion and electron heat fluxes GK and Alcator Cmod [EXC648 Howard]

Validated simulations would have important consequences for predicting burning plasma scenarios

	EDGE TRANSPORT AND PEDESTAL
 ► HEATING ✓ MAGNETIC TOPOLOGY 	PLASMA SCENARIOS: L-H power threshold [EXC351 Verdoolaege], [EXC432 Lorenzini RFXmod], [EXC434 Delabie JET], [EXC446 Gurchenko FT-2] / [EXC153 Hahn KSTAR] Conflict in optimization criteria: ELM control and confinement
<section-header></section-header>	 1) TRIGGER OF L-H TRANSITION: [EXC61 Kobayashl JT60M], [EXC194 Estrada TJII], [EXC285 Dong HL-2A], [EXC384 Cheng HL-2A], [EXC539 Schmitz DIIID] / [EXC619 Cziegler AlcatorCmod], [EXC575 BelokurovTUMAN-3M] 2) PEDESTAL STABILITY AND PROFILES: triangularity [EXC195 de la Luna JET,], edge modes [EXC253 Zhong HL-2A], [EXC43 Xu EAST], [EXC88 Gao EAST], EP-Hmode [EXC618 Gehardt NSTX], Enhanced pedestal H-mode without turbulent reduction [EXC545 Canik DIIID-NSTX], edge non-stiffness Lmode [EXC170 Merle TCV], micro-tearing [EXC361 Hillesheim MAST], [EXC427 Kong HL-2A], [EXC429 Maggi JET], .1-mode regime [EXC612 Hubard], [EXD209 Golfinopouls Alcatorcomd]. GAMs [EXC112 Porte TCV] / [EXC242 Melnikov T-10] / [EXC564 Yu HT-7], [EXC444 Bulanin Globus-M] 3) ELM CONTROL (3-D EFFECTS): Pellet/Li injection [EXD62 Wang EAST], RMPs [EXD205 Nazikian DIIID] [EXD655 Ahn NSTX-DIIID], [EXC290 Nie HL-2A], SMBI[EXC303 Yu HL-2A/EAST/KSTAR], [EXC403 Lee KSTAR], / [EXC536 Orlov DIIID], RMP and particle pump-out [EXC607 Jakubowski], RMP and detachement [EXD488 OHNO LHD], Strike line striation [EXD630 Schmitz], [EXC269 Evans LHD-DIIID],

Scenario development (L-H power threshold) the whole mirrored in the smallest parts

n _e (10 ²⁰ m⁻³)	Β _τ (T)	S (m²)	P _{th} - H ₂ (MW)	P _{th} - He (MW)	P _{th} - D ₂ (MW)	P _{th} - DT (MW)
0.5	2.65	683	61	31 - 46	31	24
0.5	5.3	683	106	53 - 80	53	43
1.0	5.3	683	175	88 - 132	88	70

H-mode operation is expected to marginal in H but possible in He

aboratorio Nacional Fusión

[EXC432 Lorenzini] RFXmod; isotope effect in Quasi-Single-Helicity state.

TCV] L-H threshold is 20% higher in both H and He than D

[EXC344 Sips]/[EXC351 Verdoolaege]

GAM/transport Isotope effect in [EXC446 Gurchenko **FT-2**] in consistentcy with previous results in

Impurities / neutrals and magnetic Stimulated L-H transition configuration [EXC434 Delabie JET]

SMBI [EXC153 Hahn KSTAR]

Trigger of the L-H transition: role of dynamical flows

Recent experiments, HL-2A [EXC285 Dong], DIIID [EXC539 Schmitz], TJ-II [EXC19 Estrada], AlcatorCmod [EXC619 Cziegler], has pointed out towards a synergistic role of turbulence-driven flows (ZFs) and pressure gradient driven flows in the triggering and evolution of the L-H transition.

Further R&D should be centred on identifying key players for H-mode transition in order to trigger it at reduced P_{input} ^{10/31}

Positive influence of triangularity on confinement has not been recovered in ILW due to higher collisionality in consistency with **P-B** expectations [EXC195 de la Luna JET]

At high neutral recycling, pedestals are found in stable. Then, additional physics is required to explain the onset of the ELM instability. Beneficial effect of N₂ seeding [EXC429 Maggi JET]

Searching for Microtearing modes at the pedestal in MAST using novel diagnostic techniques and comparison with GK [EXD361 Hillesheim]

0.94 0.95 0.96 0.97 0.98 0.99 1.00 0.94 0.95 0.96 0.97 0.98 0.99 1.00

200

oroidal ı 100

Qualitative agreement with P-B model, but missing physics needs to be addressed to provide full predictive of pedestal structure (including role of neutrals and impurities)

10

Pedestal transport and stability: alternative regimes

QH-mode maintained to high Greenwald fraction in strongly shaped plasma [PPC243 Solomon DIIID] / [TH/2-2 Snyder]

Long-pulse H-mode operation with edge coherent mode in EAST; GYRO simulations suggest DTEM [EXC43 Xu]

I-Mode with edge temperature pedestal while density profile remains unchanged from L-mod [EXC612 Hubbard]

New regimes (as an alternative to type I EMLs) to a burning plasma scenarios look promising.

ELMs control

Device	Mode	Heat split	Part. split	MHD	ν _e *	Topology	ELM control
DIII-D	n=3, n=1 EFC	weak - no	yes	no	<0.5	Vacuum	Suppression
	n=3, n=1 EFC	yes	yes	n=1 LM	>1.5	RFA	Mitigation
	n=3, n=1 EFC	yes	yes	no	>3.0	Vacuum	L-mode
TEXTOR	n=1,24	yes	yes	no	>5.0	Vacuum	L-mode
MAST	n=3,4,6	yes	yes	no	>2.0	Res. MHD	Mitigation
Asdex-U	n=2,3	yes	tbd	no	>8.0	Vacuum	Mitigation
JET	n=1,2	no	yes	2/1 LM	<1.5	Res. MHD	Mitigation
	n=2	yes	yes	no	>6.0	Vacuum	L-mode
NSTX	n=1,3	yes	yes	no	>1.0	Vacuum	ELM trigger

Comparison of Li-granule triggered ELMs with intrinsic type-I ELMs [EXD62 Wang EAST]

Active ELM control have been demostrated including magnetic perturbations, pellet injection, SMBI (Supersonic Molecular Beam Injection), edge current control

Strike line striation as signature for 3-D boundary formation [EXD630 Schmitz]

Power Exhaust: 3-D effects and ELMs control

ELM control witH a reduced number of Icoils [EXC536 Orlov DIIID] M3D-C1 simulation of amplification and screening of resonant poloidal harmonics [EXC205 NazikiaN]

Modulate ECH analysis shows a spontaneous bifurcation at the heat transport across the island, observed in both DIIID and LHD [EXC269 Evans]

Control of ELMs by magnetic perturbations have been achieved, but there is not yet completeness of understanding of ELM suppresion mechanisms

	PLASMA-WALL / PLASMA EXHAUST
✓ MAGNETIC TOPOLOGY	✓ INNOVATIVE CONFIGURATIONS: SNOWFLAKE [EXD124 Duval TCV] [EXD352 Calabro EAST] [EXD497 Soukhanovskii DIIID] / SUPER-X / STELLARATORS
OPERATION AT HIGH DENSITY / detachment	Impurity seeding [EXD556 Mukai LHD], [EXD82 Kallenbach AUG] / [EXD660 McLean DIIID], W divertor [EXD632 Herrmann AUG], [EXD514 Wishmeier]
✓ LIQUID METALS	liquid metals as alternative PFC [EXD159 Verkov T-11M], [EXD513 Mazzitelli FTU]/[EXD664 Mirnov T11M]
✓ PLASMA CONDITIONING	Li [EXD81 Maingi NSTX-EAST], [EXD426 Shcherbak T-11M], GDC [EXD126 Douai], ICRH [EXD600 Wauters JET], isotopic change[EXD268 Loarer JET]
 ✓ EROSION-DEPOSITION- RETENTION-DUST 	[EXD122 Rubel JET] / [EXD273 Brezinsek JET] / [25/356 Rudakov DIIID] / [EXD650 Halitovs], [EXD136 Shoji LHD], [EXD390 Hong KSTAR], [EXD92 Schmid], [EXD450 Zushi QUEST], mixed materials [EXD670 Scotti NSTX]
	[EXD280 Kasahara LHD], [EXD282 Hanada QUEST], W [EXD476 Tsitrone WEST]
✓ PW (LONG-PULSE)	Stray light / Divertor [EXD634 Kukushkin ITER JET], [EXD662 Reichle ITER], Electromagnetic effects
	[EXD502 Spolaore]
	[EXD123 Harrison MAST], [EXD514 Wishmeier]
* WODELLING	Extrapolating SOL width from present machines to ITER :[EXD96 Birkenmeier AUG],
✓ SOL width	

 \checkmark

Innovative exhaust magnetic configurations

Power distributed to all 4 SPs but not reproduced yet by EMC3-Eirene. No evidence of scrape-off layer broadening. Transport in the private flux region [EXD124 Duval TCV]

Enhancement of heat transport and heat redistribution among additional strike points [EXD497 Soukhanovskii DIIID]

Snowflake scenario IN EAST [EXD352 Calabro EAST]

Snowflake configuration: Encouraging results on DIIID, NSTX and TCV (and just first results in EAST) with activation of extra divertor legs.

Power exhaust, liquid metals

COOLING OF FIRST WALL

Lithium Capillary-pore-system CPS limiters with closed circulation loop [EXD159 Vertkov T11M]

CPS experiments in FTU [EXC513 Mazzitelli] / TJII [Tabares]

Lithium conditioning and confinement: NSTX / EAST [EXD81 Maingi] / [PD Jackson DIIID]

CPS is a promising solution with a need to find the best candidate material (Li/Sn/Ga) that fits all the necessary properties.

Alternative power exhaust solutions need to be vigorously pursued. 17/31

Plasma detachment and integrated control

AUG achieved the ITER required PD conditions for about half the values of the critical parameter Psep/R [EXD82 Kallenbach AUG]

Integrated control

Power exhaust and core performance

Power exhaust and magnetic topology Plasma detachment is effectively stabilized with RMP [EXD488 Ohno]

3-D fields have impact on divertor detachement [EXD655 Ahn NSTX-DIIID]

In stellarators the larger perturbation field (larger island) leads to detachement stabilization [OV Kobayashi]

Divertor detachment is a key to ITER mission. Robust target power flux control schemes need to be further tested across machines for a reliable application to ITER

Boundary diagnostics and edge validated simulations

PLASMA DIAGNOSTICS: 2D characterization with Te below 1 eV essential for comparing simulation codes to experiment [EXD660 McLean DIIID]

EMC3-EIRENE modelling and experimental results from imaging of lobe structures that form due to RMPs . The coherence imaging data support modelling predictions that the ion flow velocity within lobes differs from the unperturbed SOL [EXD Harrison MAST]

Understanding of processes leading to divertor detechment is currently incomplete requiring **further development of validated simulations** [divertor asymmetries, neutral model, kinetic effects] [EXD514 Wishmeier]

SOL transport and particle/impurity sources

LFS HFS #84686 ssmm #84724 #84778 #84778 #84779 #84783 #84783 #84785

In JET-ILW deposition and fuel inventory are strongly reduced (20x) in comparison to JET-C. [EXD122 Rubel / Exp273 Brezinsek JET].

Melting of W by ELM heat loads [EXD235 Matthews JET/ITER]

Transition from ion sheath-connected scaling to resistive blob regime as density increases with possible impact on backbround erosion, consistent role of finite ion temperature dynamics [EXD96 Birkenmeier AUG]

Advances on retention, melting during ELMs, mixed materials, SOL width and ion dynamics. 20/31

	IMPURITY / PARTICLE TRANSPORT AND SOURCES
EMPIRICAL ACTUATORS	
✓ CORE HEATING	Efficient to avoid impurity accumulation in existing devices
✓ MHD	Valisa JET]
✓ SOURCES AND FUELLING✓ REAL TIME CONTROL	fuelling + ICRH + pumping [EXC187 Nunes JET], [EXC195 de la Luna JET], source location [EXC228 Sudo LHD], [EXD161 Cui HL-2A], N puffing [EX244D Mazzotta FTU], melting of W [EXD235 Matthews JET], [EXD392 Murakami LHD], [EXC690 Joffrin JET], Neutrals/core [EXC305 Fujii LHD]
	ELM (control with gas) + Sawtooth (ICRH Heating) [EXC Lennholm173 JET]
	1) ROLE OF HEATING ON GRADIENTS (NEOCLASSICAL effects) [EXC330 Valisa JET]
TOWARDS BASIC UNDERSTANDINGOptimum profiles for achieving high fusion gain without impurity accumulation?	2) ROLE OF HEATING ON TURBULENT driven transport [EXC575 KSTAR], [NBI EXP310 Yoshinuma LHD],
	3) Flux surface plasma POTENTIAL ASYMMETRIES [OV4 Sánchez TJ-II]
	4) Strong inertia and electrostatic forces resulting in POLOIDAL ASYMMETRIES (High Z) [EXC224 Mazon AUG] / [EXC236 Camenen TCV] / [EXPC330 Valisa JET] [EXP458 Hogeweij ITER]
	5) ASYMMETRIES AND NC TRANSPORT [EXC534 Viezzer AUG]
	6) MODELLING IMPURITY/PARTICLE SOURCES AND TRANSPORT [EXD392 Murakami LHD], modelling / power exhaust [EXD514 Wischmeir]

Physics basis for avoiding impurity accumulation: neoclassical Laboratorio and anomalous mechanisms

In-out impurity density asymmetry in the pedestal consistent divergence-free flows, which does not lead to a significant deviation from neoclassical transport I[EXC534 Viezzer AUG]

First direct observation flux surface plasma potential asymmetries consistent with MC calculations [Sánchez TJ-II].

EGDE IMPURITY/PARTICLE SOURCES: the importance of apparently insignificant details

The corner configuration has the best energy confinement (green) in [EXP690 Joffrin JET]

Neutral transport based on high dynamic range Balmer a spectroscopy [EXC305 Fujii LHD]

Impurity source location is essential for determining impurity transport properties [EXC228 Sudo LHD]

Heating and MHD to control core accumulation

Reversal of C convection velocity with NBI heating (impurity hole) [EXP310 LHD]

Particle confinement of Carbon in T-10, showing imputiies removal during central ECRH [EXC301 Klyuchnikov T-10]

MHD + ICRH controls W

Neoclassical transport is the dominant channel in the core for W, affected by centrifugal forces and electrostatic poloidal asymmetries.

[WXC330 Valisa JET]

aboratorio

Nacional

OPERATIONAL LIMITS AND DISRUPTIONS

✓ DISRUPTIONS: MGI, SMBI, MAGNETIC PERTURBATIONS

✓ DENSITY LIMIT

Mitigation with SMBI/ MGI [EXC495 Dong J-TEXT] / Runaway control[EXC500 Carnevale FTU]

Configuration [EXC177 Kirneva TCV] / [EXC245 Spizzo FTU-RFX]

OPERATINAL LIMITS and DISRUPTIONS CONTROL

Runaway-control in the FTU tokamak, for position and ramp-down control of disruptiongenerated RE [EXC500 Carnevale]

High density is associated with the destabilization of edge resonating magnetic islands and perspectives of ECRH to overcome the critical edge density (RFP / FTU) [EXC425 Spizzol

[FXC177 Kirneva TCV]

aboratorio

Nacional

Fusión

		torio
	PLASMA PERFORMANCE AND CONTROL	nal
FUELLING	Fuelling He [PPC98 Romanelli ITER]	
BREAKDOWN	Plasma initiation ITER [PPC255 Mineev] Ohmic breakdown [PPC571 Yoo KSTAR] Modelling non-inductive ramp-up [PPC Poli 542] [EXC72 Mitarai STOR-M]	
CONTROL	Magnetic and kinetic control [PPC190 Moreau] Fast vertical control [PPC201 Mueller KSTAR, EAST, NSTX], [PPC248 Gribov ITER] Design, prototype and manucturing in-vessel coils ITER [PPC691 Encheva ITER] Control with non-asisymmetric coils [PPC376 Hawryluk DIIID] Real time control NTMs / ECRH OPERATIONAL [PPC430 Reich AUG], [PPC553 Kim KSTAR] Control plasma profiles [PPC636 Felici TCV, AUG ITER] Physics model based control (q, betaN) [PPC520 Barton DIIID] Magnetic conf (Snowflake) Divertor detachment CONTROL [PPC379 Kolemen DIIID] Control burn in ITER feedback [PPC599 Kessel] / L-H transition	
PLASMA SCENARIO DEVELOPMENT	Towards Steady state conditions / hybrid scenario [PPC277 Petty DIIID] Scenarios for ITER operation [EXC344 Sips] Integration operation of the ITER-Like Wall at JET [EXC433 Giroud JET] /[EXC187 Nunes JET] ITER scenarios at AUG [EXC606 Schweinzer] High inductance for steady-state operation [9/335 DIIID Ferron] ITER BASELINE Q=10 [EXC342 Luce DIIID] Operation difficulties at low applied torque Scenario in LHD [PPC348 Nagaoka LHD] Plasma scenario development HL-2M [2/163 SONG HL-2M] Quiescent H-mode [PPC243 Solomon DIIID] Fully non-inductive scenario for Steady State Operation [EXC681 Gong EAST/DIIID] Compativility of ITB and steady-stae operation [23/661 garofalo DIIID] DEMO physics [PPC448 Wenninger]	

PLASMA CONTROL

Real time control NTMs / ECRH main actuator FULLY OPERATIONAL [PPC430 Reich AUG]

SnowFlake Divertor control [EXD379 Koleman DIIID]

Plasma performance and integration:

Towards ITER integrated scenario development: equilibrated ion/electron temperatures, low injected torque, low rho and collisionality, ELM control,

divertor compatibility

Development of the Q=10 Scenario on AUG. Operation at q₉₅=3 demonstrated at H_{98y2}=1, $\beta_N \sim 2$, n/n_{GW}=f_{GW} ~ 0.85 ; alternative scenario q₉₅=3.6 under investigation.

BUT, Integration of ELM mitigation not achieved; No stationary behavior with N-seeding [EXC606 Schweinzer]

Laboratorio

Nacional

Fusión

ITER-like conditions $H_{98y2}=1$, $\beta_N \sim 1.9$ (low torque, electron heating and radiative operation)

BUT, challenge operation due to onset of TM. [PPC342 Luce DIIID]

Plasma performance and integration

- triangularity $\delta \sim 0.36$

W accumulation control achieved with ICRH and gas puffing.

Energy confinement to H98(y,2) ≈ 1 achieved at Ip =2.5 MA, work ongoing to higher current. [EXC433 Giroud JET] / [EXC187 Nunes JET].

But operation in plasmas with high momentum input and need for FLM control

High temperature regime has been significantly expanded in helical plasmas [EXD348 Nagaoka]

Final remark

Great contributions for the development of ITER / DEMO plasma scenarios including both:

- **I. engineering approach** i.e. use of empirical control parameters to avoid possible fusion showstoppers
- I. physics research i.e. basic understanding of underlying mechanism for predicting burning plasma with confidence

Acknowledgements:

I appreciate very much stimulating discusions and supporting material provided by my colleagues and IAEA organization.