Developing Physics Basis for the Radiative Snowflake Divertor at DIII-D

by

V.A. Soukhanovskii¹,

with S.L. Allen¹, M.E. Fenstermacher¹, C.J. Lasnier¹, M.A. Makowski¹, A.G. McLean¹, W.H. Meyer¹, D.D. Ryutov¹, E. Kolemen², R.J. Groebner³, A.W. Hyatt³, <u>A.W. Leonard³</u>, T.H. Osborne³, T.W. Petrie³, J. Watkins⁴,

¹Lawrence Livermore National Laboratory ²Princeton University ³General Atomics, ⁴Sandia National Laboratory

- Presented at the 25th IAEA Fusion Energy Conference Saint Petersburg, Russia
- October 13-18, 2014

Snowflake Divertor Configuration is Studied in DIII-D as a Tokamak Divertor Power Exhaust Concept

D. D. Ryutov, PoP 14, 064502 2007; PPCF 54, 124050 (2012) Experiments in TCV, NSTX, EAST, DIII-D

Large Region of Low B_p Around Second-order Null in Snowflake Divertor is Predicted to Modify Power Exhaust

Geometry properties

Criterion: $d_{XX} \le a (\lambda_q / a)^{1/3}$

- Higher edge magnetic shear
- Larger plasma wetted-area A_{wet} (f_{exp})
- Larger parallel connection length L_{11}
- Larger effective divertor volume $\rm V_{div}$

Transport properties Criterion: d_{XX} ≤ D*~a (a β_{pm} / R)^{1/3}

- High convection zone with radius D*
- Power sharing over four strike points
- Enhanced radial transport (larger λ_q)

"Laboratory for divertor physics"

Radiative Snowflake Divertor Experiments in DIII-D Suggest Strong Effects on Power Exhaust

Outline of talk

- Comparisons between snowflake and standard divertor encouraging
 - Compatibility with good core and pedestal performance
 - Confirmed geometry properties A_{wet} and L_{II}
 - Initial confirmation of transport properties
 - Broader divertor radiation distribution
- Reduced inter-ELM peak heat flux q_{peak}
- Reduced ELM energy, T_{peak} and q_{peak}

Control of steady-state snowflake configurations in DIII-D with existing coils

• E. Kolemen et.al., next talk

Standard Snowflake

Increased Plasma-wetted Area Leads to q_{peak} Reduction In Snowflake Divertor

Standard Snowflake

- Snowflake with $d_{xx} < 10$ cm
- Core plasma unaffected
 - 5 MW NBI H-mode
 - Stored energy and density constant
- **Divertor power balance unaffected**
- In outer divertor, q_{peak} reduced by 30%

$$A_{wet} = 2\pi R \; f_{exp} \; \lambda_{q_{\parallel}}$$

$$f_{exp} = \frac{(B_p/B_t)_{Midplane}}{(B_p/B_t)_{Divertor}}$$

q_{peak} Reduction in Snowflake Divertor Partly Due to Increased A_{wet} and $L_{|\,|}$

Convective Plasma Mixing Driven by Null-region Instabilities May Modify Particle and Heat Transport

- Flute-like, ballooning and electrostatic modes are predicted in the low B_p region
 - $\Box \beta_{p} = P_{k}/P_{m} = 8\pi P_{k}/B_{p}^{2} >> 1$
 - Loss of poloidal equilibrium
 - Fast convective plasma redistribution
 - Especially efficient during ELMs when P_k is large
- Estimated size of convective zone
 - Standard: 1cm
 - Snowflake: 6-8 cm

D. D. Ryutov, IAEA 2012; Phys. Scripta 89 (2014) 088002.

- Divertor null-region β_p measured by divertor Thomson Scattering
 - In snowflake, broad region of higher $\beta_p >> 1$
 - Higher X10 during ELMs

Heat and Particle Fluxes Shared Among Strike Points in Snowflake Divertor

Broader q_{||} Profiles in Snowflake Divertor May Imply Increased Radial Transport

- Fit q_{||} profile with Gaussian (S) and Exp.
 (λ_{sol}) functions (Eich PRL 107 (2011) 215001)
- Increased λ_q may imply increased transport
 - Increased radial spreading due to L_{11}
 - SOL transport affected by null-region mixing
 - Enhanced dissipation may also play role

Divertor Radiation More Broadly Distributed in Snowflake for Radiative Divertor, q_{peak} Reduced by x5

- Detached radiative divertor produced by D₂ injection with intrinsic carbon radiation
- In radiative snowflake nearly complete power detachment at P_{SOL}~3 MW

SF Divertor Weakly Affects Pedestal Magnetic and Kinetic Characteristics, Peeling-balooning Stability in DIII-D

- At lower n_e, H-mode performance unchanged with snowflake divertor
 - Similar P_{ped}, W_{ped}
 - H98(y,2) ~1.0-1.2, β_N~2
 - Plasma profiles only weakly affected
- Peeling-ballooning stability unaffected
 - Shear₉₅, q_{95} increased by up to 30%
 - Medium-size type I ELMs
 - ELM frequency weakly reduced
 - ELM size weakly reduced

ELM Power Loss Scales with Collisionality, Reduced in H-modes with Snowflake Divertor

- Both ΔW_{ELM} and $\Delta W_{ELM}/W_{ped}$ weakly reduced
- Mostly for $\Delta W_{ELM}/W_{ped} < 0.10$
- Increased collisionality with snowflake $v_{ped}^* = \pi Rq_{95}/\lambda_{ee}$

Peak ELM Target Temperature and ELM Heat Flux Reduced in Snowflake Divertor

- Type I ELM power deposition correlates with τ_{ELM}
- In radiative snowflake, ELM peak heat flux reduced by 50-75 %
- Similar effect in NSTX

S. L. Allen et. al., IAEA 2012

Developing the Snowflake Divertor Physics Basis For High-power Density Tokamaks

- SF divertor configurations compatible with high H-mode confinement and high pressure pedestal
- Snowflake geometry may offer multiple benefits for inter-ELM and ELM heat flux mitigation
 - Geometry enables divertor inter-ELM heat flux spreading over larger plasma-wetted area, multiple strike points
 - Broader parallel heat fluxes may imply increased radial transport
 - ELM divertor peak target temperature and heat flux reduction, especially in radiative snowflake configurations

