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Energetic particles (EP) in burning plasmas subject to 
transport by 3D equilibrium, microturbulence, Alfven 
eigenmode (AE) 
This paper reports gyrokinetic particle simulation of AE 

excited by EP in DIII-D tokamak 



Gyrokinetic Turbulence Simulation of EP Transport 
• Fully self-consistent simulation of energetic particle (EP) 

turbulence and transport must incorporate 
► Kinetic effects of thermal particles at micro-scale 
► EP and thermal plasmas treated on the same footing (non-perturbative) 

• Large dynamical ranges of spatial-temporal processes require 
simulation codes efficient in utilizing peta-scale computers 

• Therefore, studies of EP physics in ITER burning plasmas call 
for a new approach of global nonlinear gyrokinetic simulation 

• US DOE SciDAC GSEP (Gyrokinetic Simulation of Energetic 
Particle Turbulence and Transport) 

• Verification & Validation: RSAE frequency up-sweeping and 
mode structures from gyrokinetic simulations agree well with 
DIII-D experiments (shot # 142111) [D. A. Spong et al, PoP2012]  
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Linear physics: What is AE dispersion relation, mode structure? 
Gyrokinetic simulations with kinetic effects of thermal plasmas 

and non-perturbative EP effects recover experimental results of 
toroidal Alfven eigenmode (TAE) in DIII-D  
Non-perturbative EP effects induce TAE radial localization 



Measurement of Fast Radial Drift of TAE in DIII-D 
• TAE moves outward rapidly while plasma profiles barely change 
• In consistent with perturbative theory: MHD thermal plasma 

determines mode structure, kinetic EP provides growth rate  

TAE in DIII-D shot # 142111 around 525ms 



GTC Simulations Find TAE Radial Localization 
• Simulations scan EP profiles within experimental uncertainty  
• Unstable TAE radial structure moves with EP density gradient 
• EP non-perturbative contribution induces TAE radial localization 
• In contrast, stable TAE excited by antenna has larger radial width 

TAE in DIII-D 
shot # 142111 
at 525ms 



Comparison of TAE Mode Structures between 
Simulation & Experiment 

GTC 

• EP non-perturbative contribution breaks radial symmetry of 
TAE eigenmode 

TAE in DIII-D 
shot # 142111 
at 525ms 

DIII-D GTC 

[Z. X. Wang et 
al, PRL2013] 



Comparison of TAE Frequency between 
Simulation & Experiment 

• EP non-perturbative contribution and trapped electron effects 
induce TAE frequency dependence on toroidal mode number n 

TAE in DIII-D shot # 142111 at 525ms 
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Nonlinear physics: How does AE saturate? What is NL dynamics 
Conventional model: Reduction of dimensionality from 3D to 

1D: single toroidal mode, radially local 
Simulation: Nonlinear physics beyond 1D model 

• Zonal fields (flow & current) generated by AE nonlinear mode coupling 
• Fast chirping induced by radial variations of AE mode amplitude & 

guiding center dynamics 



GTC Simulations Find TAE Saturation by Zonal Flow 
• Suppressing zonal flow leads to higher TAE saturation amplitude  
• Removing thermal particle nonlinearity: even higher TAE amplitude  
• Zonal current has little effects on TAE saturation 
• TAE saturates by zonal flow without relaxation of EP profiles  
• Suppressing zonal flow: TAE saturates by relaxation of EP profiles 
• TAE radial mode structures modified by zonal flow after saturation 

Simulation of TAE in DIII-D shot # 142111 at 525ms 
[Z. X. Wang, PhD Thesis, 2014] 



Generation of Zonal Fields by Alfven Eigenmode 
•  γZF~1.9γTAE: zonal fields generated by TAE nonlinear mode 

coupling, not modulational instability 
• Zonal flow generation by driftwave vs. Alfven eigenmode 

• Driftwave: modulational instability 
• AE: nonlinear mode coupling 

• Electrostatic vs. Electromagnetic turbulence 
• Electromagnetic: Stochastic magnetic fields could suppress zonal flow 

generation due to the increase of zonal flow dielectric constant of by 
electron adiabatic responses 

• No similar effects in electrostatic turbulence 

• Conjecture: Stochastic magnetic fields of RMP (resonant 
magnetic perturbation) could suppress zonal flow generation, 
and lead to enhanced driftwave turbulence in H-mode pedestal; 
Will be tested by gyrokinetic simulation with 3D RMP fields 



GTC Nonlinear Simulations of BAE Find Fast Chirping 
• Fast, repetitive, mostly downward chirping 
• 90o phase shift between intensity and frequency oscillations 
• Simulation features observed in recent NSTX TAE, ASDEX BAE 
• Chirping mechanisms: nonlinear formation vs. destruction of 

phase space island due to radial variations of mode structure & 
guiding center dynamics (intrinsically 2D problem) 

[H. S. Zhang et al, PRL2012] 
[M. Podesta et al, NF2011; PPPL-4719] 
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AE is an example of MHD modes in fusion plasma excited by 
pressure gradients or equilibrium currents 
Gyrokinetic simulation of kinetic-MHD processes:  

• MHD mode frequency < ion cyclotron frequency 
• kinetic effects important in MHD modes 



Gyrokinetic Simulation of Kinetic-MHD 
• Macroscopic MHD modes limit burning plasma performance 

and threaten fusion device integrity: NTM, RWM, sawtooth etc 
• Kinetic effects at microscopic (thermal particles) & meso-scales 

(EP) and coupling of multiple processes play a crucial role in 
excitation and evolution macroscopic MHD modes 

• Neoclassical tearing modes (NTM): set principal performance 
limit in both ITER baseline and hybrid scenarios 

• Predictive NTM simulation needs to incorporate kinetic physics 
at multiple spatial and temporal scales:  
microturbulence 

neoclassical bootstrap current 

magnetic island dynamics (current driven MHD instability) 

• Gyrokinetic toroidal code (GTC) physics goal: first-principles, 
integrated simulation of nonlinear interaction between 
microturbulence, EP, MHD, & neoclassical transport 



Gyrokinetic Toroidal Code (GTC) 
• GTC current capability for kinetic-MHD simulation: 

► General 3D toroidal geometry & experimental profiles 
► Microturbulence & EP: Kinetic electrons & electromagnetic fluctuations 
► MHD: Equilibrium current, resistive and collisionless tearing modes 
► Neoclassical transport 
► RF: fully kinetic ions 
► Ported to GPU (titan) & MIC (tianhe-2) 

• Other GTC papers at this meeting: 
 RF: TH/P2-10, A. Kuley, Nonlinear Particle Simulation of Radio 

Frequency Waves in Fusion Plasmas 
 Microturbulence: TH/P2-44, Y. Xiao, Gyrokinetic Simulation of 

Microturbulence in EAST Tokamak and DIII-D Tokamak 
 MHD: TH/P4-11, I. Holod, Global Gyrokinetic Simulations of 

Electromagnetic Instabilities in Tokamak Plasmas 
 EP: TH/P7-29, W. L. Zhang, Verification and Validation of Gyrokinetic 

Particle Simulation of Fast Electron Driven Beta-Induced Alfven 
Eigenmode on HL-2A Tokamak 

[Z. Lin et al, Science1998] 
http://phoenix.ps.uci.edu/GTC 



Gyrokinetic Particle Simulation of Alfven Eigenmode 

• Linear physics: Gyrokinetic particle simulations of DIII-D 
tokamak find radial localization of toroidal Alfven eigenmodes 
due to non-perturbative contribution by energetic particles 

• Nonlinear physics: Gyrokinetic particle simulations find 
• Nonlinear saturation of toroidal Alfven eigenmodes by 

zonal flows 
• Nonlinear oscillations of beta-induced Alfven eigenmode 

amplitude and frequency due to radial variations of mode 
amplitude and guiding center dynamics  

• Future work: EP transport, coupling to MHD modes 

GSEP project webpage http://phoenix.ps.uci.edu/gsep 
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