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Energetic particle (EP) transport by Alfven eigenmode 

(AE) can degrade confinement of burning plasmas

This paper reports gyrokinetic particle simulation of AE 

excited by EP in DIII-D tokamak



Gyrokinetic Turbulence Simulation of EP Transport

• Fully self-consistent simulation of energetic particle (EP) 

turbulence and transport must

► Incorporate kinetic effects of thermal particles at micro-scale

► Treat EP and thermal plasmas on the same footing (non-perturbative)

• Large dynamical ranges of spatial-temporal processes require 

simulation codes efficient in utilizing peta-scale computers

• Therefore, studies of EP physics in ITER burning plasmas call 

for a new approach of global nonlinear gyrokinetic simulation

• US DOE SciDAC GSEP (Gyrokinetic Simulation of Energetic 

Particle Turbulence and Transport)

• Verification & Validation: RSAE frequency up-sweeping and 

mode structures from gyrokinetic simulations agree well with 

DIII-D experiments (shot # 142111) [D. A. Spong et al, PoP2012] 
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Linear physics: What is EP effects on AE dispersion relation and 

mode structure?

Gyrokinetic simulations with kinetic effects of thermal plasmas 

and non-perturbative EP effects recover experimental results of 

toroidal Alfven eigenmode (TAE) in DIII-D 

Non-perturbative EP effects induce TAE radial localization



Measurement Shows Fast Radial Drift of TAE in DIII-D

• TAE moves rapidly while thermal plasma profiles barely change

• Cannot be explained by perturbative theory: thermal plasma 

profiles set MHD mode structure, EP only drives growth rate 

TAE in DIII-D shot # 142111 around 525ms



GTC Simulations Find TAE Radial Localization

• Simulations scan EP profiles within experimental uncertainty 

• Unstable TAE radial structures move with EP density gradient

• In contrast, stable TAE excited by antenna has larger radial width

• EP non-perturbative contribution induces TAE radial localization

TAE in DIII-D 

shot # 142111 

at 525ms



Comparison of TAE Mode Structures between 
Simulation & Experiment

GTC

• EP non-perturbative contribution breaks radial symmetry of 

TAE eigenmode

TAE in DIII-D 

shot # 142111 

at 525ms

DIII-DGTC

[Z. X. Wang et 

al, PRL2013]



Comparison of TAE Frequency between 
Simulation & Experiment

• EP non-perturbative contribution and trapped electron effects 

induce TAE frequency dependence on toroidal mode number n

TAE in DIII-D shot # 142111 at 525ms
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Nonlinear physics: How does AE saturate? What is NL dynamics

Conventional model: Perturbative theory and reduction of 

dimensionality from 3D to 1D, i.e., single toroidal mode, radially 

local

Non-perturbative simulation: Nonlinear physics beyond 1D model

• Zonal fields (flow & current) generated by AE nonlinear mode coupling

• Fast frequency chirping induced by radial variations of AE mode amplitude 

& guiding center dynamics



GTC Simulations Find TAE Saturation by Zonal Flow

• Suppressing zonal flow: higher TAE saturation amplitude 

• Removing thermal particle nonlinearity: even higher TAE 

amplitude and relaxation of EP profiles

• TAE saturates by zonal flow without relaxation of EP profiles

• Zonal current has little effects on TAE saturation

• gZF~1.9gTAE: zonal fields generated by TAE nonlinear mode 

coupling, not modulational instability

Nonlinear simulation of TAE in 

DIII-D shot # 142111 at 525ms

[Z. X. Wang, PhD Thesis, 2014]



Generation of Zonal Flow by Alfven Eigenmode

• Zonal flow generation by driftwave vs. Alfven eigenmode

• Driftwave: modulational instability

• AE: nonlinear mode coupling

• Electrostatic vs. Electromagnetic turbulence

• Electromagnetic: Stochastic magnetic fields could suppress zonal flow 

generation because of increase of zonal flow dielectric constant due to 

electron adiabatic responses, i.e., electron shielding effects

• No similar effects in electrostatic turbulence

• Conjecture: Stochastic magnetic fields of RMP (resonant 

magnetic perturbation) could suppress zonal flow generation, 

and lead to enhanced driftwave turbulence in H-mode pedestal; 

Need to be tested by gyrokinetic simulation with 3D RMP fields



GTC Nonlinear Simulations of BAE Find Fast Chirping

• Fast, repetitive, mostly downward chirping

• 90o phase shift between intensity and frequency oscillations

• Simulation consistent with recent NSTX TAE, ASDEX BAE

• Chirping mechanisms: nonlinear formation vs. destruction of 

phase space island due to radial variations of mode structure & 

guiding center dynamics (intrinsically 2D dynamics)

[H. S. Zhang et al, PRL2012]

[M. Podesta et al, NF2011; PPPL-4719]
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AE is an example of MHD modes with kinetic effects in fusion 

plasma excited by pressure gradients or equilibrium currents

Gyrokinetic simulation of kinetic-MHD processes: 

• MHD mode frequency < ion cyclotron frequency

• kinetic effects important in MHD modes



Gyrokinetic Simulation of Kinetic-MHD

• Macroscopic MHD modes limit burning plasma performance 
and threaten fusion device integrity: NTM, RWM, sawtooth etc

• Kinetic effects at microscopic (thermal particles) & meso-scales 
(EP) and coupling of multiple processes play a crucial role in 
excitation and evolution macroscopic MHD modes

• Neoclassical tearing modes (NTM): set principal performance 
limit in both ITER baseline and hybrid scenarios

• Predictive NTM simulation needs to incorporate kinetic physics 
at multiple spatial and temporal scales: 

microturbulence

neoclassical bootstrap current

magnetic island dynamics (current driven MHD instability)

• Gyrokinetic toroidal code (GTC) simulation of kinetic-MHD: 
first-principles, integrated simulation of nonlinear interaction 
between microturbulence, EP, MHD, & neoclassical transport



Gyrokinetic Toroidal Code (GTC)

• GTC current capability for kinetic-MHD simulation:

► General 3D toroidal geometry & experimental profiles

► Microturbulence & EP: Kinetic electrons & electromagnetic fluctuations

► MHD: Equilibrium current, resistive and collisionless tearing modes

► Neoclassical transport

► RF: fully kinetic ions

► Ported to GPU (titan) & MIC (tianhe-2)

• Other GTC papers at this meeting:
 Microturbulence: TH/P2-44, Y. Xiao, Gyrokinetic Simulation of 

Microturbulence in EAST Tokamak and DIII-D Tokamak

 EP: TH/P7-29, W. L. Zhang, Verification and Validation of Gyrokinetic 

Particle Simulation of Fast Electron Driven Beta-Induced Alfven 

Eigenmode on HL-2A Tokamak

 MHD: TH/P4-11, I. Holod, Global Gyrokinetic Simulations of 

Electromagnetic Instabilities in Tokamak Plasmas

 RF: TH/P2-10, A. Kuley, Nonlinear Particle Simulation of Radio 

Frequency Waves in Fusion Plasmas

[Z. Lin et al, Science1998]

http://phoenix.ps.uci.edu/GTC



Summary

• Linear physics: Gyrokinetic particle simulations find radial 

localization of toroidal Alfven eigenmodes in DIII-D tokamak 

due to non-perturbative contribution by energetic particles

• Nonlinear physics: Gyrokinetic particle simulations find

• Nonlinear saturation of toroidal Alfven eigenmodes by 

zonal flow, which is generated by TAE mode coupling

• Nonlinear chirping of beta-induced Alfven eigenmode due 

to radial variations of mode amplitude and guiding center 

dynamics

• Future work: EP transport, coupling to MHD modes

GSEP project webpage http://phoenix.ps.uci.edu/gsep


