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1 RJ Buttery IAEA 2014 DIII-D Overview 

•  Addressing Critical Design and  
Research Issues for ITER 

•  Achieving High Performance  
in Future Burning Plasmas 

•  Expanding the Frontier  
toward Fusion Energy 

 

 

DIII-D Focus is on Developing the Required Solutions for 
Fusion Energy Through Improved Scientific Understanding 

Science ! Better Solutions 
and Confident Projection 
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Addressing Critical Design and 

Research Issues for ITER 

– ELMs, Disruptions, Test Blanket, 

Non-nuclear operation 
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•  Hypothesis: 3D fields drive tearing 
at pedestal top to restrict its width 

à Prevents ELM instability 

•  Requires co-alignment of 

–  Low ωe |  rotation region 

–  Tearing-resonant surfaces 

–  …at the pedestal top 
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RMP-ELM Suppression Requires a Validated Physics 
Theory To Provide Confidence for ITER 
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•  Vary n=2 field structure from  
kink to pitch-aligned resonance 

–  Two distinct ideal MHD plasma modes 
–  Ramp from exciting one to the other Kink  

Response 

Pitch 
Aligned 

Response 

n=2 

Nazikian/Wade 

New Evidence for Resonant Field Penetration as  
Explanation of RMP-ELM Suppression  
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•  Vary n=2 field structure from  
kink to pitch-aligned resonance 

•  Penetration of pitch-aligned field 
– ωe | à0 at pedestal top 

–  Pedestal width narrows 
–  Transition to ELM suppression 

New Evidence for Resonant Field Penetration as  
Explanation of RMP-ELM Suppression  
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Temperature 
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•  Vary n=2 field structure from  
kink to pitch-aligned resonance 

•  Penetration of pitch-aligned field 
– ωe | à0 at pedestal top 

–  Pedestal width narrows 
–  Transition to ELM suppression 
–  Flattens pedestal temperature 
–  Non-linear growth of pitch  

aligned response 

New Evidence for Resonant Field Penetration as  
Explanation of RMP-ELM Suppression 

HFS Magnetics 
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•  Vary n=2 field structure from  
kink to pitch-aligned resonance 

•  Penetration of pitch-aligned field 
– ωe | à0 at pedestal top 

–  Pedestal width narrows 
–  Transition to ELM suppression 
–  Flattens pedestal temperature 
–  Non-linear growth of pitch  

aligned response 

•  Validates 2-fluid MHD predictions of  
island formation & overlap (M3D-C1) 

New Evidence for Resonant Field Penetration as  
Explanation of RMP-ELM Suppression  

ü  Increased confidence 
in predictions for ITER 
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•  ELM suppression maintained 
as coils reduced from 12 to 5 " 

–  Good H factor maintained 

•  Current required for suppression 
is similar in most cases 

–  30% less n=3 power 
–  n=2 and n=4 fields increase 

as n=3 field reduced 

•  ELM suppression also effective 
in Helium plasmas  

–  Relevant torque & e– heating 

ELM Suppression is Robust to Loss of Coils  
and Helium Operation 

Orlov 

11 coils  H98=1.2 

7 coils   H98=1.2 
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ü  Affirms ITER’s Research Plan 
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•  ELM suppression maintained  
as coils reduced from 12 to 5 

–  Good H factor maintained 

•  Current required for suppression 
is similar in most cases 

–  30% less n=3 power 
–  n=2 and n=4 fields increase 

as n=3 field reduced 

•  ELM suppression also effective " 
in Helium plasmas  

–  Relevant torque & e– heating 

ELM Suppression is Robust to Loss of Coils  
and Helium Operation 

ü  Affirms ITER’s Research Plan 

Orlov 

Helium 

…in collaboration with ITER 
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•  Compatible with high gas injection " 

–  Greenwald density fractions 
over 70% achieved 

–  Accessed by raising triangularity 
as predicted by EPED model 

•  Edge Harmonic Oscillation found  
to provide good impurity control 

ELM-stable QH Mode Shown Compatible with ITER 
Greenwald Density and Good Impurity Flushing 

QH mode relies on an Edge Harmonic 
Oscillation to regulate the edge 

Solomon 

_ 
ne/nG 

ü  Improved confidence of  
QH mode access in ITER 
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•  NIMROD predicts radiation asymmetry 
governed by n=1 mode  

–  Mode redistributes radiation 
away from MGI port 

•  Confirmed by DIII-D data 
–  Initial mode 180o away from MGI 

Massive Gas Injection Experiments Consistent with NIMROD 
Predictions of Modest Disruption Radiation Asymmetry 

Izzo 
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•  NIMROD predicts radiation asymmetry 
governed by n=1 mode  

–  Mode redistributes radiation 
away from MGI port 

•  Confirmed by DIII-D data 
–  Initial mode 180o away from MGI 
–  Can control mode with 3D field  

to rotate past bolometer in steps 
•  Yields modest 40% peaking 

ü Matches NIMROD prediction  
of 40% peaking 

Massive Gas Injection Experiments Consistent with NIMROD 
Predictions of Modest Disruption Radiation Asymmetry 

ü  Modest toroidal radiation 
asymmetries predicted in ITER 

Izzo 

Bolometer measurements as  
mode phase varied shot-to-shot 

Fit to data yields 40% 
toroidal peaking 
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•  Injection of Ne Shattered Pellets 
into early CQ may provide viable 
path to suppress runaway growth 

 

•  RE current dissipation explained  
by RE-ion pitch angle scattering 

–  Higher Z more effective 
at RE dissipation 

DIII-D Developed Promising Runaway Electron  
Mitigation Solution for ITER 

ü  First demonstration of 
potential solution for ITER 
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Correction of ITER Test Blanket Module Fields  
Enables Low Torque and High β Operation 

•  Test Blanket Module simulation  
coil lead to disruptions in low  
torque baseline 

TBM prevents  
operation at ITER  
relevant torque 
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…in collaboration with ITER 
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Correction of ITER Test Blanket Module Fields  
Enables Low Torque and High β Operation 

•  Test Blanket Module simulation  
coil lead to disruptions in low  
torque baseline 

•  Correction fields prevent disruption  
–  Restores low torque window   

of operation for ITER 
–  Also recovers performance  

at high β, reducing local  
heat loads by 80% 

ü  ITER Test Blanket Module tolerable 
with good error field correction 

Correction  
expands low  

torque access 
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Achieving High Performance  

in Future Burning Plasmas 

–  Predictive understanding of 

optimization and control 

in relevant conditions 
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•  Baseline targets achieved in stationary 
conditions (>2τR) with relevant sources 

–  Dominant electron heating  
–  Low torque  
–  Reduced core fueling 

•  Avoid tearing instability:  
–  Error field correction 
–  Pedestal/ELM regulation 
–  Maintain differential rotation 

Unique DIII-D Capabilities Advance Baseline Scenario 
Toward ITER-Relevant Conditions 

Luce, Paz-Soldan 
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•  Baseline targets achieved in stationary 
conditions (>2τR) with relevant sources 

–  Dominant electron heating  
–  Low torque  
–  Reduced core fueling 

•  Avoid tearing instability: 
–  Error field correction 
–  Pedestal/ELM regulation 
–  Maintain differential rotation 

•  Integration of ITER requirements 
leads to reduced confinement 

Unique DIII-D Capabilities Advance Baseline Scenario 
Toward ITER-Relevant Conditions 

Luce, Paz-Soldan 
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Confinement Reduction at Low Torque Consistent 
with Turbulence Rise and Transport Models 

•  Large rise in turbulence  
with lower rotation 

•  Interpreted by GYRO simulation 
–  Reduction in ExB flow  

shear stabilization 
–  Increase in linear  

growth rates 
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At Low Torque Electron Heating Induces Density Flattening 
Consistent with Increased Trapped Electron Modes 

•  Density flattening observed 
when ECH raises Te/Ti 

•  Explained by rise in turbulence 

•  Increased TEM growth in core 

GYRO: Raising Te/Ti lowers critical 
density gradient for TEM leading 
to increased turbulence 
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•  Simple model matches " 
probe measurements 

–  Also replicated by XGC0 code 
–  Empty loss cone shifts velocity  

in co-IP direction 
–  Probe measurements 

confirmed by main ion CER 

•  Core rotation found to  
correlate with edge rotation 

Ion Orbit Loss Models Capture  
Intrinsic Plasma Rotation Behavior 

ü  Expected to generate similar 
local edge flow velocity in ITER 
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•  Linear ideal MHD broadly 
captures 3D response 

–  M3D-C1 reveals sensitivities 
to edge conductivity 

•  Non-linear VMEC over- 
predicts response 

–  Discrepancies being 
investigated 

Upgraded 3D Magnetics Reveal Sensitivities and 
Differences in MHD Models of 3D Plasmas 

New magnetics helping refine and 
develop physics models of plasma 
response to 3D fields  
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3D Fields for RMP-ELM Suppression Lead to  
Significant Energetic Particle Losses 

•  Notches in n=3 field show RMP ejects edge fast ions 
–  ELM suppression maintained 

Van Zeeland 
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3D Fields for RMP-ELM Suppression Lead to  
Significant Energetic Particle Losses 

•  Notches in n=3 field show RMP ejects edge fast ions 
–  ELM suppression maintained 

Van Zeeland 

Fast ions  
fall with  
RMP on	


RMP off 

SPIRAL Simulations  
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–  Consistent with SPIRAL+M3D-C1 
full orbit predictions 

Leads to increased divertor heat load in model and experiment 
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Expanding the Frontier  

to Fusion Energy 
 

Future fusion devices require better 
solutions for core and boundary 
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Sub-eV 2D Divertor Thomson Scattering Measurements 
Reveal Dynamics of Divertor Detachment 

DIII-D focusing on the physics of an improved detached divertor 
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•  Transition to detachment  
in a narrow density range  

–  Nearly independent of  
heating power 

•  Detachment onset has  
a weak effect on H98 

Sub-eV 2D Divertor Thomson Scattering Measurements 
Reveal Dynamics of Divertor Detachment 
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Detachment:  
•  Both models over-predict Te  

and under-predict PRAD 

•  Increasing PRAD to measured  
levels enables Te match 

–  Over-predicts line radiation 

Hard to capture sharp 
transition to detachment 

Detachment Studies Reveal Radiation Shortfall in 
Simulation Models 

Better cold, molecular and  
atomic species models required 

Previous modeling captured attached  
plasma conditions well 

McLean 
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•  Net Tungsten erosion is weak 
–  Gross erosion compensated  

by re-deposition 

ü Validates model that indicates  
low net erosion in ITER 

•  Erosion of high-Z sample mitigated 
by low Z renewable coatings 

–  CH4 used as proxy for Be, Li,  
B, other low-Z possibilities 

ü Potential for real time protective 
coating of key areas 

High-Z in-situ Materials Studies Show  
Promising Results for Future Devices 
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•  Potential solutions from peaked to broad current profiles  
–  From efficient on-axis current drive to high bootstrap current 

DIII-D Utilizing Flexible Heating and Current Drive Systems  
to Develop Path to High β Steady State 

Regime Strength Challenge 

High li βN=5 without RWM Sustainment; 
Tearing 

Hybrid High confinement  Current evolution 

High qmin 
βN=5 potential;  
Low disruptivity Fast ion transport 

ECCD 

Off axis beam 
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•  Stationary βN=3.65 sustained  
using NB & EC current drive 
–  High confinement H98=1.6 
–  50% bootstrap, 40% Greenwald 

Steady-State “Hybrid” Scenario Established  
with 1 Mega-Amp Fully Non-inductive Current 

Good ITER and FNSF candidate regime 
with efficient on-axis CD 

Petty 

Anomalous current 
broadening 

τR 

1MA fully non-inductive 

βN=3.65 

IP (MA) 

H98=1.6 
VSURF (V) 

Time (s) 

• Can overdrive current on axis 
–  Anomalous broadening 

maintains qmin~1.1 
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Steady-State “Hybrid” Scenario Established at High βN 
with 1 Mega-Amp Fully Non-inductive Current 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Breaking news 

•  n=3 RMP ELM suppression 
established in SS hybrid 

–  But reduced confinement 
in full suppression case 

•  Trade-off to be optimized 
between 2 and 4 kA 

Good ITER and FNSF candidate regime 
with efficient on-axis CD 

Nazikian/Wade 

H98=1.35 

H98=1.30 

H98=1.1 

2 kA 
Mitigated 

4 kA 
Suppressed 

0 kA 
ELMy 
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•  More peaked current raises 
performance further 

–  H&CD tools ‘freeze in’  
stable profiles 

•  ITER Qequiv=5 performance "  
demonstrated in SN plasmas 

High li Plasmas Demonstrate Excellent Performance 

ITER SHAPE 

Ferron 

=0.3 

ü  Promising for ITER steady state 
with day 1 H&CD systems 
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•  More peaked current raises 
performance further 

–  H&CD tools ‘freeze in’  
stable profiles 

•  ITER Qequiv=5 performance "  
demonstrated in SN plasmas 

•  Extended to βN=5.3 in  
double null configuration 

–  H98= 1.8 and 80% bootstrap 

High li Plasmas Demonstrate Excellent Performance 

Future fusion reactor option 

ITER SHAPE 

Ferron 

=0.3 

ü  Promising for ITER steady state 
with day 1 H&CD systems 
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•  Reduced torque and current  
ramp rate to match EAST 

–  80% bootstrap sustained for  
two current redistribution times 

•  ρ=0.7 transport barrier gives 
good fast ion confinement 

High qmin Path: High Bootstrap Fully Non-inductive 
Scenario Developed for Long Pulse Operation 

Garofalo, Gong 
Joint initiative with EAST 

Time (s) 

H98 

High βP βN 

βT (%) 

Surface voltage 

IP (MA) 

H89>2 

Fully non-inductive  
target for EAST 

Joint initiative with EAST 

1010 time (s)time (s)

Plasma Plasma 
Parameter Parameter 

100100

τE
τCR τwall

DIII-D EAST 

Time (s) 
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Higher Performance in High qmin Encounters Enhanced  
Fast Ion Transport due to Alfvén Eigenmodes 

•  Confinement decrease at high  
qmin with rising Alfvén activity 

•  Rises in fast ion loss consistent 
with critical gradient model 

–  Hypothesis: due to overlapping 
wave-particle resonances 
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EPED Physics Model Predicts Path to “Super H-Mode”  
with Doubled Pedestal Pressure 

Snyder 

Pedestal Density (1019m-3) 
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EPED prediction 

Peeling 

Ballooning 

coupled to 

H-mode 
H-mode 

δ=0 

•  Strong shaping decouples  
peeling from ballooning mode 

–  Opens valley in pedestal stability 
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EPED Physics Model Predicts Path to “Super H-Mode”  
with Doubled Pedestal Pressure 

Pedestal Density (1019m-3) 
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coupled to 
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•  Strong shaping decouples  
peeling from ballooning mode 

–  Opens valley in pedestal stability 

Snyder 
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EPED Physics Model Predicts Path to “Super H-Mode”  
with Doubled Pedestal Pressure 

Pedestal Density (1019m-3) 
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H-mode 

δ=0.4 

•  Strong shaping decouples  
peeling from ballooning mode 

–  Opens valley in pedestal stability 

Snyder 
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EPED Physics Model Predicts Path to “Super H-Mode”  
with Doubled Pedestal Pressure 

Peeling 

Ballooning 

Pedestal Density (1019m-3) 

0 2 

EPED prediction 

4 6 8 

20 

30 

10 

Pe
de

st
al

 P
re

ss
ur

e 
(k

P
a)

 

δ=0.5 

•  Strong shaping decouples  
peeling from ballooning mode 

–  Opens valley in pedestal stability 

Snyder 
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EPED Physics Model Predicts Path to “Super H-Mode”  
with Doubled Pedestal Pressure 

•  Strong shaping decouples  
peeling from ballooning mode 

–  Opens valley in pedestal stability 

•  Super H-Mode discovered 
–  EHO provided benign saturation 

mechanism to navigate valley 
–  Record βN=3.1 with quiescent edge 

EPED predicts Super H-mode 
possible in ITER 
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DIII-D Future Exploitation Focuses on  
Three Key Challenges for Fusion Energy 

Prepare for  
Burning Plasmas 

Torque-free electron 
heating 

Path to  
Steady State 

Flexible H&CD 

PMI-Boundary 
Solution 
Heat flux  
control 

ECH 

2nd Off-axis  
Beam 

ECCD 

Balanced 
Torque NBI 

Advanced 
3D Coil Set 

New Divertor & 
Hot Reactor Relevant Wall 

Helicon 
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•  Improved physics basis for critical ITER needs 
–  ELM control, disruption mitigation,  

validated test blanket and non-nuclear plans 

•  Enhanced predictive understanding of performance 
defining physics and control for burning plasmas 

–  Turbulence, rotation, energetic particles, 3D response  
and viable operating scenarios 

•  Characterized high performance core and edge  
solutions for steady state operation 

– Divertor detachment and high β core  

DIII-D is Addressing Key Challenges  
for ITER and Fusion Energy 

Increased confidence in high performance in ITER  
and  informs decisions on future fusion devices 
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DIII-D Collaborators Around the World 
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Reserve Slides 
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First Principles EPED Physics Model Predicted Path to Access 
“Super H-Mode” with Doubled Pedestal Pressure 

•  Strong shaping decouples kink- 
peeling from ballooning mode 

–  Opens valley in pedestal stability 

•  Super H-Mode discovered in DIII-D 
–  Raise density to navigate valley 
–  EHO provides benign saturation 

of pedestal pressure 
–  H98=1.4  βN=3.1 ITER predicted 
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•  Pre-emptive ECCD mode tracking 
prevents appearance of NTM 

–  Real time MSE, T-S and  
deposition calculation 

•  H98= 1.8 and 80% bootstrap 

•  Also applied in high qmin  
and ITER baseline scenarios 

Real Time ECCD NTM Control Enables Access to  
βN=5 Double Null High li Scenario 

ü  Real time localized ECCD  
an effective NTM control tool 
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ü  High li an exciting alternative 

for a fusion reactor 
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•  Observe deficit in fast ions  
over classical predictions 

–  Correlated with increase  
in Alfvén activity 

•  High βP plasmas reveal AE 
amplitude rises with ∇βfast 

High βP 

Classically predicted ∇βfast 

H89< 2 

H89> 2 
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Heidbrink 

Higher βT in High qmin Encounters Enhanced  
Fast Ion Transport due to Alfvén Eigenmodes 

H89~1.7 

Fast ion deficit  
at qmin> 2 
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q95=5  qmin=2  qmin=1 Experiments at higher βT and high qmin 
show reduced confinement 

Path to improved performance: 
–  Off-axis NBI & ECH to reduce 

reduce central ∇βfast and  
optimize thermal transport 

–  Improve pedestal 
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Higher βT in High qmin Encounters Enhanced  
Fast Ion Transport due to Alfvén Eigenmodes 

•  Confinement decrease at high  
qmin with rising Alfvén activity 

•  Rises in fast ion loss consistent 
with critical gradient model 

–  Hypothesis: due to overlapping 
wave-particle resonances 
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Recent Data Identifies Critical Gradient Model of 
Alfven Eigenmode (AE) Induced Fast Ion Transport 

•  Power scan reveals saturation  
in EP density above threshold 

–  Due to overlapping wave-particle 
resonances in AT plasmas 

•  Divergence of flux rises 
above a critical gradient 

–  Simplifies EP prediction 

•  Data also validates fully  
non-linear AE-EP simulations 
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3D Fields for RMP-ELM Suppression Lead to  
Significant Energetic Particle Losses 

•  Notches in n=3 field show RMP ejects edge fast ions 
–  ELM suppression maintained 
–  Consistent with SPIRAL+M3D-C1 

full orbit predictions 

•  Leads to increased divertor heat loads 
in simulation and experiment 

Van Zeeland 

RMP ON RMP OFF 

Loss  
Locations 

SPIRAL 
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•  Combine radiative divertor with high 
performance steady state core 

–  Good performance maintained 
with βN  = 3.0, H98 = 1.3 throughout 

–  Divertor heat flux reduced by x2 

•  ExB drift important in optimizing  
divertor radiation and core dilution 

–  Neon injection required in private 
flux region away from ion Bx∇B  

Techniques for Integrated Core-Edge Solutions Developed 
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EHO in QH-mode Provides Same Impurity Exhaust as 
40Hz ELMs 

Buttery / IAEA 2014 

•  Measured by CER with non-
recycling fluorine injection 

Solomon 
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H Mode Access: Measurements Confirm Turbulence 
and Ion Diamagnetic Flows Play Key Role 

Turbulence drives "  
flows which  
suppress turbulence 

•  Limit cycle discharges show " 
ion diamagnetic flows required 
to lock in H-mode transition 

L-mode 

H-mode LCO: 
Loss of turbulence 
allows flow to fall 
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•  Limit Cycle discharge provides 
laboratory to test L-H physics 

–  Turbulence induced flow  
insufficient to sustain H mode 

–  H-mode locked in by rise in 
ion diamagnetic flow 

–  See ∇P term start to lead 
drive to ωExB rotation  

•  Measured L-mode seed flow  
shear consistent with upturn  
in L-H threshold 

H Mode Access: Measurements Confirm Role of  
Ion Diamagnetic Flow in L-H Transition 
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physics based L-H prediction 
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•  Lithium leads to sustainment 
of an edge fluctuation 
-  No core C impurity rise 

•  Doubles pedestal width 
and height 
-  H98 increased 60% 
-  ELMs delayed 

Lithium Injection Causes Bifurcation to Larger 
Pedestal With Enhanced Edge Fluctuations 

with Li 
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Experiments Confirm Reduced Heat Flux with 
Increased Connection Length 

Divertor leg geometry an important 
aspect of divertor optimization 

•  Increased divertor volumetric losses 
–  Despite decreased flux expansion 
–  Consistent with modeling 
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•  Injection in private flux region away from  
ion Bx∇B reduces core impurity rise 

–  Radiative divertor halves heat flux 

•  Snowflake divertor further reduces  
heat loads in AT plasmas 

–  Modest benefit with Ne radiation 
–  But 30% increased Ne in core 

Techniques for Integrated Core-Edge Solutions Developed 

DND 
SF 

R /m 

4 

q
⊥

 M
W

/m
2  

SNOWFLAKE 

0 
  1.0   1.6 

No 
puff 

Radiating 

βN  = 3.0 
H98 = 1.3 

R /m 

4 

q
⊥

 M
W

/m
2  

Outer Divertor 

0 
  1.0   1.6 

No puff 

Radiating 

0 

1.2 – 

5 
Time (s) 

3 

SNEON/n  au 

H98 

Neon 
rise 

Private flux injection  SOL injection 

Petrie, Soukhanovski 



59 RJ Buttery IAEA 2014 DIII-D Overview 

RMP ELM Suppression in Helium Plasmas 
Validates ITER Research Plan  

•  Helium plasmas subject  
to type I ELMs 

•  Suppression in Helium  
in ITER-relevant conditions  

–  Relevant torque & rotation  
–  Dominant electron heating 
–  Close to L-H margin 
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ü  Commissioning of ELM 
suppression in Helium on ITER 

…in collaboration with ITER 


