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The physical characteristics of NTV investigated in tokamaks 

for rotation control and the evaluation of plasma response 

 Motivation 

 Low magnitude (dB/B0 ~ O(10-3)) 3D magnetic fields are used favorably 

used in tokamaks (e.g. ELM suppression, MHD mode control) 

 3D fields of this magnitude can produce neoclassical toroidal viscosity 

(NTV), which can: 

• Alter plasma rotation 

• Significantly reduce fusion gain, Q, by increased alpha particle transport  

(dB/B0 ~ O(10-4))  

 Therefore, it is important to understand NTV in tokamaks, backed by 

accurate (~O(1)) quantitative modeling 

 Outline 

 NTV physical characteristics 

 NTV comparison of theory to experiment 

 NTV experiments and assessment of plasma response 

 Application of NTV to plasma rotation control for NSTX-U 
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K.C. Shaing, et al., IAEA FEC 2014 Paper TH/P1-11 
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Neoclassical Toroidal Viscosity (NTV) can be studied through the application of 3D 

fields in tokamaks 

 Theory: NTV strength varies with 

plasma collisionality n, dB2, rotation 
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K.C. Shaing, M.S. Chu, C.T. Hsu, et al., 

PPCF 54 (2012) 124033 
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NTV physical characteristics are generally favorable for rotation control 

 Non-resonant NTV characteristics (e.g. in 

NSTX and KSTAR) 

 3D field configurations with dominant toroidal 

mode number n > 1 can alter the plasma 

rotation profile, , without mode locking 

 Experimentally, NTV torque is radially 

extended, with a relatively smooth profile 

 NTV changes continuously as the applied 3D 

field is increased 

 TNTV is not simply an integrated torque 

applied at the plasma boundary, but a radial 

profile – e.g.  shear can be changed 

 These aspects are generally favorable for 

rotation control; give potential mode control 

 Questions remain 

 e.g. Is there hysteresis when  is altered by 

NTV? 
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KSTAR experiments show essentially no hysteresis in 

steady-state  profile vs. applied 3D field strength 

 Experiment run to produce 

various steady-state  with 

different 3D field evolution 

 The steady-state rotation 

profile reached is generally 

independent of the starting 

point of   

 depends just on the applied 

3D field current level 

 important for rotation control 

 Absence of hysteresis further 

confirmed in very recent 

experiments with 6 steps in 

3D field current 
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KSTAR non-resonant (“n = 2”) NTV experiments 
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Neoclassical Toroidal Viscosity varies as dB2, and Ti
2.27 in 

KSTAR experiments, expected by theory 
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Y.S Park, et al., IAEA FEC 2014: EX/P8-05 (Fri. PM) 

n = 2 field current vs. time 

Plasma rotation profile vs. time 

 NTV torque TNTV expected to scale 

as dB2 and Ti
2.5 in the “1/n regime” 

Best fit: 

 dB2 

Best fit: 

 Ti
2.27 

 steady-state 

reached each dB step 
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3D field perturbation experiments conducted to measure 

the TNTV profile in NSTX 

 High normalized beta plasma targets typically chosen 

 Typically near or above n = 1 no-wall limit (for higher Ti) 

 Apply or otherwise change 3D field on a timescale 

significantly faster than the momentum diffusion time, tm 

 Analysis before/after 3D field application isolates TNTV in the 

momentum diffusion equation; -dL/dt = TNTV 

 dL/dt measured experimentally and compared to theoretically 

computed TNTV on this timescale 

 dL/dt profile can change significantly on timescales > tm, (diffuses 

radially, broadens, leads to significant error compared to TNTV) 

 Focus on non-resonant applied 3D field configurations 

 To avoid driving MHD modes 

 Resonant fields (e.g. n = 1) are more strongly screened by plasma 

7 
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Theoretical NTV torque density profiles, TNTV are computed 

for NSTX using theory applicable to all collisionality regimes 
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 Use Shaing’s “connected NTV model”, 

covers all n, superbanana plateau regimes  

 

 Full 3D coil specification and dB spectrum, 

ion and electron components computed, 

no aspect ratio assumptions 

(K.C. Shaing, Sabbagh, Chu, NF 50 (2010) 025022) 

(Y. Sun, Liang, Shaing, et al., NF 51 (2011) 053015)  
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Measured NTV torque density profiles quantitatively compare well to computed 

TNTV using fully-penetrated 3D field 
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n = 3 coil configuration n = 2 coil configuration 

 TNTV (theory) scaled to match peak value of measured -dL/dt  

 Scale factor ((dL/dt)/TNTV) = 1.7 and 0.6 (for cases shown above) – O(1) agreement 

 O(1) agreement using “fully-penetrated 3D field” indicates that plasma response is not 

strongly amplified from this “vacuum field assumption” (TNTV ~ dB2) 

Experimental 
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Plasma response from fully-penetrated 3D field used in NTV 

experimental analysis matches M3D-C1 single fluid model 

Surface-averaged dB from fully penetrated 

model vs. M3D-C1 single fluid model 
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 NTV torque: 
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current and NBI power can compensate for Ti variations  
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Physical characteristics of NTV are investigated in tokamaks for rotation control 

and the evaluation of plasma response 

 Experiments on NSTX and KSTAR show that non-resonant NTV torque 

TNTV from applied 3D field is a radially extended, relatively smooth profile 

 Analysis of KSTAR shows TNTV  (dB3D)2; TNTV  Ti
2.27; no hysteresis on 

the rotation profile when altered by non-resonant NTV (key for control) 

 3D field perturbation experiments in NSTX using both n = 2 and n = 3 

field configurations measure the TNTV profile 

 The measured TNTV profile quantitatively compares well between 

experiment and Shaing’s “connected NTV theory” 

 Non-resonant TNTV profile in NSTX is quantitatively consistent with “fully-

penetrated field” assumption of plasma response 

 Surface-averaged 3D field profile from M3D-C1 single fluid model 

consistent with field used for quantitative NTV agreement in experiment 

 Rotation controller using NTV and NBI designed/tested for NSTX-U 
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Extra slides for poster 
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 Momentum force balance –  decomposed into Bessel function states 

 
 

 

 NTV torque: 
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Measured NTV torque density profiles quantitatively compare well to computed 

TNTV using fully-penetrated 3D field 

17 

 TNTV (theory) scaled to match peak value of measured -dL/dt  

 Scale factor ((dL/dt)/TNTV) = 1.7 and 0.6 (for cases shown above) – O(1) agreement 

 O(1) agreement using “fully-penetrated 3D field” indicates that plasma response is not 

strongly amplified from this “vaccum field assumption” (TNTV ~ dB2) 

Experimental 

-dL/dt 

NTVTOK 

yN 

Experimental 

-dL/dt 

yN 

NSTX NSTX 

NTVTOK 

n = 3 coil configuration n = 2 coil configuration 
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Very recently, high beta plasmas transiently reached  

bN = 4 in 2014 campaign 

 Values obtained using fully 

converged KSTAR EFIT 

reconstructions  

 High values reached 

transiently at lowered Bt 

 BT in range 0.9 - 1.2 T 

 bN up to 4 with li ~ 0.8 for 

duration longer than tE 

~60 ms in these 

discharges 

 bN/li = 5 is ~ 40% over the 

computed n = 1 ideal MHD 

no-wall limit 

 Adding newly available 3rd 

neutral beam source may 

further increase the 

operating performance in the 

ongoing device campaign 

KSTAR operating space containing ~11,500 equilibria 

li 

5 

4 

3 

2 

1 

0 

bN 

0.6 0.8 1.0 1.2 1.4 1.6 

2014 KSTAR operation 

MP2014-05-02-007 

by Sabbagh and Y.S. Park 

n = 1 no-wall limit 

 bN > bN
no-wall 

bN/li = 5 

    
  

  
  

n = 1 with-wall limit 

Y.S Park, et al., IAEA FEC 2014 paper EX/P8-05 (Fri. PM) 

S.W. Yoon, et al., IAEA FEC 2014 paper OV/3-4 (Tues. AM) 
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Non-resonant Neoclassical Toroidal Viscosity (NTV) physics 

will be used for the first time in rotation feedback control 
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Feedback using NTV: “n=3” dB(r) spectrum 
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 Momentum force balance –  decomposed into Bessel function states 

 
 

 

 NTV torque: 

      2K1 K2
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Plasma rotation control has been demonstrated for the first time with TRANSP 

using NBI and NTV actuators 

3D coil current and NBI power (actuators) 

t (s) 

This case uses pre-programmed 3D coil 

current and NBI feedback 

Rotation evolution vs. desired 

rotation setpoints 
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Please sign-up for a poster copy 
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Extra slides 
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Several ordered publications by K.C. Shaing, et al. led to the “Combined” NTV 

Formulation 

 Publications (chronological order) 

1) K.C. Shaing, S.P. Hirschman, and J.D. Callen, Phys. Fluids 29 (1986) 521. 

2) K.C. Shaing, Phys. Rev. Lett., 87 (2001) 245003. 

3) K.C. Shaing, Phys. Plasmas 10 (2003) 1443. 

4) K.C. Shaing, Phys. Plasmas 13 (2006) 052505. 

5) K.C. Shaing, S. A. Sabbagh, and M. Peng, Phys. Plasmas 14 (2007) 024501. 

6) K.C. Shaing, S. A. Sabbagh, M.S. Chu, et al., Phys. Plasmas 15 (2008) 082505. 

7) K.C. Shaing, P. Cahyna, M. Becoulet, et al., Phys. Plasmas 15 (2008) 082506. 

8) K.C. Shaing, S. A. Sabbagh, and M. S. Chu, PPCF 51 (2009) 035004. 

9) K.C. Shaing, S. A. Sabbagh, and M. S. Chu, PPCF 51 (2009) 035009. 

10) K.C. Shaing, S. A. Sabbagh, and M. S. Chu, PPCF 51 (2009) 055003. 

11) K.C. Shaing, M. S. Chu, and S. A. Sabbagh, PPCF 51 (2009) 075015. 

12) K.C. Shaing, M. S. Chu, and S. A. Sabbagh, PPCF 52 (2010) 025005. 

13) K.C. Shaing, S. A. Sabbagh, and M. S. Chu, Nucl. Fusion 50 (2010) 025022. 

14) K.C. Shaing, J. Seol, Y.W. Sun, et al., Nucl. Fusion 50 (2010) 125008. 

15) K.C. Shaing, M. S. Chu, and S. A. Sabbagh, Nucl. Fusion 50 (2010) 125012. 

16) K.C. Shaing, T.H. Tsai, M.S. Chu, et al., Nucl. Fusion 51 (2011) 073043. 

17) K.C. Shaing, M.S. Chu, C.T. Hsu, et al., PPCF 54 (2012) 124033. 
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 Topic 
 Plateau transport 

 Island NTV 

 Collisional, 1/n regimes 

 Banana, 1/n regimes 

 Multiple trapping 

 Orbit squeezing 

 Coll. b’dary layer, n 0.5 

 Low n regimes 

 Superbanana plateau 

 Superbanana regime 

 Bounce/transit/drift res. 

 Jbootstrap w/resonances 

 Combined NTV formula 

 B drift in CBL analysis 

 Flux/force gen. coords. 

 SBP regime refinement 

 NTV brief overview 
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EX/1-4: Physical Characteristics of Neoclassical Toroidal Viscosity in 

Tokamaks for Rotation Control and the Evaluation of Plasma Response 
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 Experimental NTV characteristics 
 NTV experiments on NSTX and KSTAR 

 NTV torque TNTV from applied 3D field is a 

radially extended, relatively smooth profile 

 Perturbation experiments measure TNTV profile 

 Aspects of NTV for rotation control  
 Varies as dB2; TNTV  Ti

5/2 in primary 

collisionality regime for large tokamaks 

 No hysteresis on the rotation profile when 

altered by non-resonant NTV is key for control 

 Rotation controller using NTV and NBI tested 

for NSTX-U; model-based design saves power  

 NTV analysis to assess plasma response 

 Non-resonant NTV quantitatively consistent 

with fully-penetrated field assumption 

 Surface-averaged 3D field profile from M3D-C1 

single fluid model consistent with field used for 

quantitative NTV agreement in experiment 

 

 

 

Highlights 
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Perturbation experiments measure NTV 

torque profile and compare to theory 

Rotation controller using NTV and NBI 


