25th Fusion Energy Conference, St. Petersburg, 13—18 October 2014 EX/P8-15, Green 8 & 9, Friday 14:00—18:45

Accurate Estimation of Tearing Mode Stability Parameters in the KSTAR using High-resolution 2D ECEI diagnostic

M.J. Choi, G.S. Yun (POSTECH) W. Lee, H.K. Park (UNIST) Y.-S. Park, S.A. Sabbagh (Columbia University) K.J. Gibson, C. Bowman (University of York) C.W. Domier, N.C. Luhmann, Jr. (UC Davis) J.-G. Bak, S.G. Lee, and the KSTAR team (NFRI)

Introduction

m = 2 magnetic island

 Evolution of the tearing mode island size (w) is described with

$$a_{1} \frac{\tau_{r}}{r_{s}} \frac{dw}{dt} = r_{s} \Delta' + a_{2} \sqrt{\epsilon} \frac{\beta_{\theta}}{w} \frac{L_{q}}{L_{p}} \frac{w}{w^{2} + (w_{c})^{2}} + \cdots$$

$$\tau_{r} = \mu_{0} r_{s}^{2} / \eta : \text{the current diffusion time}$$

$$\eta : \text{the plasma resistivity}$$

$$\epsilon = r_{s} / R : \text{inverse aspect ratio}$$

$$\beta_{\theta} : \text{the plasma poloidal beta}$$

$$L_{q} = q / (dq/dr) \text{ and } L_{p} = p / (dp/dr) \text{ where } q \text{ is the safety factor and } p \text{ is the}$$

plasma pressure

 a_1 and a_2 : coefficients related to flux geometry of the magnetic island

$$\Delta'(w) \sim \tilde{B}_{\theta}(r_s + w) - \tilde{B}_{\theta}(r_s - w) \quad \text{classical stability index}$$
$$w_c = \sqrt{\frac{RqL_q}{m}} \left(\frac{\kappa_{\perp}}{\kappa_{\parallel}}\right)^{1/4} \quad \text{critical width for pressure flattening}$$

Parameters such as a₁, a₂, Δ', and w_c can not be "measured"
 → Method to estimate those parameters is required!

Method to estimate Δ' and w_c

Electron temperature profile near the magnetic island (away from heat sink or source) by heat flow equation ∇ · (−κ_{||}∇_{||}T − κ_⊥∇_⊥T) = 0

$$\left[\kappa_{\parallel}\nabla_{\parallel}^{2} + \kappa_{\perp}\nabla_{\perp}^{2}\right]T_{e} \approx \left[\frac{\kappa_{\parallel}}{\kappa_{\perp}}\nabla_{\parallel}^{2} + \nabla^{2}\right]T_{e} = 0 \qquad w_{c} = \sqrt{\frac{RqL_{q}}{m}}\left(\frac{\kappa_{\perp}}{\kappa_{\parallel}}\right)$$

 $\Big)^2 \frac{\partial^2}{\partial z^2}$

where magnetic field is represented with the helical flux function $\psi = \psi_0 + \psi_1$

$$B = \nabla \psi \times \hat{e}_{\eta} + B_{\eta} \hat{e}_{\eta}$$

then,

$$\nabla_{\parallel} = \hat{b} \cdot \nabla \approx \frac{1}{|B|} \begin{pmatrix} -\frac{m}{r_s} \psi_1 \sin \zeta \\ -\frac{\partial \psi_0}{\partial r} - \frac{\partial \psi_1}{\partial r} \cos \zeta \end{pmatrix} \cdot \begin{pmatrix} \frac{\partial}{\partial r} \\ \frac{m}{r_s} \frac{\partial}{\partial \zeta} \end{pmatrix} = \frac{m}{r_s |B|} \left(\psi_1 \sin \zeta \frac{\partial}{\partial r} + \psi_0' \frac{\partial}{\partial \zeta} + \psi_1' \cos \zeta \frac{\partial}{\partial \zeta} \right) \qquad \nabla^2 \approx \frac{\partial^2}{\partial r^2} + \left(\frac{m}{r_s} \frac{\partial}{\partial \zeta} \right) = \frac{m}{r_s |B|} \left(\psi_1 \sin \zeta \frac{\partial}{\partial r} + \psi_0' \frac{\partial}{\partial \zeta} + \psi_1' \cos \zeta \frac{\partial}{\partial \zeta} \right)$$

with helical angle $\zeta = m\theta - n\phi$ and *J.P. Meskat et al.*, *PPCF* (2001)

$$\psi_0(r) = \frac{\mu_0 I_0}{8\pi} \left(\left(\frac{r}{a}\right)^2 - \left(\frac{r_s}{a}\right)^2 \right)^2 \qquad \psi_1(r) = \frac{\mu_0 I_0}{8\pi} \alpha \left(\frac{r}{r_s}\right)^m \left(1 - \beta \frac{r}{r_s}\right) \quad \text{for } r \le r_s \\ = \frac{\mu_0 I_0}{8\pi} \frac{\alpha (1 - \beta) - \gamma + \gamma r/r_s}{(r/r_s)^{m+1}} \quad \text{for } r > r_s \qquad \Delta' \equiv \left[\left(\frac{d\psi_1}{dr}\right)_+ - \left(\frac{d\psi_1}{dr}\right)_- \right] / \psi_1$$

• Electron temperature profile solution $T_e(r,\zeta)$ becomes a function of parameters $\alpha, \beta, \gamma, \text{ and } \frac{\kappa_{\parallel}}{\kappa_{\perp}} \rightarrow \text{ a function of } \Delta'(\alpha, \beta, \gamma) \text{ and } w_c = \sqrt{\frac{RqL_q}{m}} \left(\frac{\kappa_{\perp}}{\kappa_{\parallel}}\right)^{1/4}$

• Fine 2D electron temperature fluctuation $(\delta T_e / \langle T_e \rangle_t)$ measurement near the island by the KSTAR ECEI diagnostic

• ECEI measurement reveals detail T_e structure of tearing mode on (r, ζ) space \rightarrow can be compared with the T_e model to estimate Δ' and w_c

• The $T_e(r,\zeta)$ model \rightarrow synthetic $\delta T_e/\langle T_e \rangle_t$ for the direct comparison with the measured $\delta T_e/\langle T_e \rangle_t$ images by the ECEI diagnostic

• Find best matching $(\alpha, \beta, \gamma, \kappa_{\perp}/\kappa_{\parallel})$ between $\delta T_{e,syn}/\langle T_{e,syn} \rangle_t$ and $\delta T_{e,ECEI}/\langle T_{e,ECEI} \rangle_t$

The illustration for the m=2 island and the measured ECE images at different time points

The T_e model solution at given $\mathbf{p} = [\alpha, \beta, \gamma, \kappa_{\perp}/\kappa_{\parallel}]$ and the synthetic ECE images at different time points

 $\chi^2(\mathbf{p}) = \frac{1}{2} \sum_{i=1}^{N} [y_{\text{syn}}(i) - y_{\text{ECEI}}(i)]^2$ difference is calculated with different \mathbf{p} s (y represents all data points of four ECE images). The global minimum χ^2 point is found over \mathbf{p} space.

The parameter sets whose $\chi^2(\mathbf{p}) < 0.0422$ (under the dashed line) are selected to estimate Δ' and w_c *M.J. Choi et al., NF (2014)*

> $\Rightarrow r_s \Delta' = -1.633 \pm 1.265$ $\Rightarrow w_c = 0.612 \pm 0.0726 \text{ cm}$

 $r_s \Delta'$ is found to be negative (classically stable) $w_c < w$ implies that the pressure profile inside the island is flat and the lost bootstrap current is destabilizing

Method to estimate a_1 and a_2

• Unknown parameters in modified Rutherford equation (MRE) for the KSTAR

$$a_{1}\frac{\tau_{r}}{r_{s}}\frac{\mathrm{d}w}{\mathrm{d}t} = r_{s}\Delta' + a_{2}\sqrt{\epsilon}\frac{\beta_{\theta}}{w}\frac{L_{q}}{L_{p}}\frac{w}{w^{2} + (w_{c})^{2}} + \cdots$$
can be estimated by
the ECE images

H.R. Wilson, FST (2004)

 a_1 and a_2 are integration coefficients which depend on magnetic geometry of the island, and they can be determined by fitting the measured island size evolution with the MRE

Stepwise approach to estimate *a*₁ and *a*₂ for more accuracy

First, consider the plasma such that $a_2\sqrt{\epsilon}\frac{\beta_\theta}{w}\frac{L_q}{L_p}\frac{w}{w^2+(w_c)^2} \ll r_s\Delta'$, then the equation returns to the original Rutherford equation $\frac{\mu_0 r_c^2}{n} w_{eq} = n \text{ is Spitzer resistivity}$

estimated for the KSTAR
plasma geometry
$$a_1 \frac{\tau_r}{r_s} \frac{dw}{dt} = r_s \Delta'$$
 estimated by the ECE images
estimated by the magnetic fluctuation measurement
(Mirnov coil)

Estimation of a_1 for the KSTAR plasma

• The low β_{θ} plasma with the constant m/n = 2/1 island growth rate

KSTAR plasma # 7318

The L-mode typical diverted plasma with neutral beam injection of 0.6 MW and electron cyclotron resonance heating of 0.3 MW It has a constant growth rate of island size (dw/dt = const) from 0.6—0.8 s

$$\Rightarrow a_1 \frac{\tau_r}{r_s} \frac{\mathrm{d}w}{\mathrm{d}t} \approx r_s \Delta'$$

Island size is estimated by Mirnov coil and calibrated with the ECE image

• The Δ' estimation in the KSTAR # 7318

 χ^2 fitting between the model $T_e(r, \zeta; \alpha, \beta, \gamma, \frac{\kappa_{\parallel}}{\kappa_{\perp}})$ and the ECEI measurement provides

 $r_s \Delta' = 0.52 \pm 0.37$

Parameter sets whose $\chi^2 < 0.1665$ are selected for the estimation (below the dashed line)

dw/dt in the KSTAR # 7318

Island size was estimated by magnetic fluctuation amplitude measured by Mirnov coil and calibrated with the ECE image within ± 1 cm accuracy Linear fitting provides $\frac{dw}{dt} = 0.322 \pm 0.012$

• a_1 in the KSTAR # 7318

From the Rutherford equation $a_1 \frac{\tau_r}{r_s} \frac{dw}{dt} = r_s \Delta'$, $a_1 = 0.26 \pm 0.16$ is obtained.

Spitzer transverse resistivity $\eta_{\perp} = 1.03 \times 10^{-4} Z \ln \Lambda T^{-3/2} [\Omega m]$ is used for $\tau_r = \frac{\mu_0 r_s^2}{\eta_{\perp}} \sim 1.56$. This coefficient a_1 can be applied to the plasma whose magnetic geometry is similar to # 7318. Theoretical a_1 estimation with the cylindrical plasma assumption is 0.82

Summary and Discussion

- Method to estimate parameters Δ' , w_c , and a_1 of modified Rutherford equation is developed
- Obtain the form of the Rutherford equation for the KSTAR plasma

$$\frac{0.26}{r_s} \frac{\tau_r}{dt} \frac{\mathrm{d}w}{\mathrm{d}t} = r_s \Delta'$$

The coefficient $a_1 = 0.26$ can be used for a_2 determination in the modified Rutherford equation

$$0.26 \frac{\tau_r}{r_s} \frac{\mathrm{d}w}{\mathrm{d}t} = r_s \Delta' + \frac{a_2}{\sqrt{\epsilon}} \frac{\beta_\theta}{w} \frac{L_q}{L_p} \frac{w}{w^2 + (w_c)^2} + \cdots$$

• The obtained Rutherford equation will be checked with the M3D-C1 simulation

Levenberg–Marquardt Algorithm (LMA): the most standard multi-parameter fit algorithm

 $\rightarrow v$

data points (t_i, y_i) model function values with given parameters $p \rightarrow \hat{y}(t_i; p)$ goodness-of-fit (chi-squared error)

$$\Rightarrow \chi^{2}(\boldsymbol{p}) = \frac{1}{2} \sum_{i=1}^{m} \left[\frac{y(t_{i}) - \hat{y}(t_{i};\boldsymbol{p})}{\omega_{i}} \right]^{2}$$

final

11

EC Emission profile

Frequency bandwidth of each channel = 0.7 GHz $\rightarrow w_{instr} \sim 1.5$ cm

Doppler effect due to finite beam size:

$$\Delta \omega_D \approx \frac{2\sqrt{2}\log 2}{w_{\text{beam}}} v_T \rightarrow w_D < 0.5 \text{ cm}$$

$$j_{\omega}(R) = j_{\omega}(R)e^{-\tau(R)}$$
$$\tau(R) = \int_{R}^{\infty} \alpha_{\omega}(R)dR$$

Vertical : Gaussian-like response (designed by optics)

I. H. Hutchinson, "Principles of Plasma Diagnostics", 2nd ed., Cambridge Press (2005)

M. Bornatici et al., Nucl. Fusion, 23, 9 (1983)

C. Watts et al., Rev. Sci. Instrum., 75, 10 (2004)