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summary | Slope temperature and divergence of

relativistic electron beam (REB) must be controlled
for efficient heating of fusion fuel.

v Fast-Ignition Realization EXperiment (FIREX) was performed on
GEKKO XII - LFEX laser facility.

v There are three difficulties of the fast-ignition scheme, namely “shut-
in”, “diverging” and “ unstoppable” of REB.

v All physical parameters of the REB were measured to evaluate
absolutely the heating efficiency.

v' The most critical problem is generation of too energetic REB (> 15
MeV) in a long-scale preformed plasma.

v" Plasma mirror will be installed to suppress generation of too
energetic REB.

v' Guiding of REB was demonstrated with sub-kT external B-field.



Fast Ignition Basic Experiment Platform

Three difficulties in fast-ignition scheme; <0 @
“shut-in”, “diverging”, and “unstoppable” of REB. ILE, Osaka

Fusion fuel

Heating laser

Shut-in
A few MeV electrons, which may heat efficiently a fuel core, are absorbed in
the cone wall itself. Most of these absorbed electrons are not ejected from the
cone.

Diverging

Electron beam have a large divergence angle (> 100 deg.). Energy flux of the
e-beam decreases significantly during transport.

Unstoppable

Too energetic electrons are generated by laser-plasma interactions, those
electrons do not deposit their energy within the fuel.



Fast Ignition Basic Experiment Platform

Divergence, energy distribution and flux of REB <0 @
are measured by using x-ray convertor attached target. ILE, Osaka

X-ray shadowgraph
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Fast Ignition Basic Experiment Platform

PR, .. =54 mg/cm? and p,.., = 22 g/cm? are obtained with <0 @
a plastic ball with asymmetric-spherical irradiation. ILE, Osaka
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Fast Ignition Basic Experiment Platform

. : : : ¢
Cross section of REB Is measured by imaging \0 ¢
Ka emission from a varied tracer layer. ILE, Osaka

C/Cu/C block target Monochromatic Ka image
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Fast Ignition Basic Experiment Platform ’
Absolute energy sepectrum of REB was obtained \0 ¢
from hard x-ray spectrum with 2-T assumption. ILE, Osaka

Energy distribution of REB measured with ESM & HEXS
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Summary of FI Basic Experiment

Heating efficiency is evaluated with measured divergence, @
energy distribution and flux of REB. ILE, Osaka

Heating efficiency estimation
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Reduction of T, is essential for efficient heating.

See details in the poster by Z. Zhang (IFE/P6-2, Thursday).
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Suppression of Too Energetic REB Generation

: : ¢
Too energetic electrons are generated in a long-scale \0 ¢
plasma generated by foot of the heating laser pulse. ILE, Osaka

Long-scale plasma
generated by foot pulse

Laser filamentation
In a long scale plasma
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Suppression of Too Energetic REB Generation

: : 2
Foot pulse can be removed by using plasma mirror. \0 ¢
It is a challenge to install plasma mirror to kJ lasers system. - Osaka

Typical shape of laser pulse Principle of plasma mirror
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See details in the poster by A. Morace (IFE/P6-4, Thursday).




Guiding REB with external B-field

Laser-generated relativistic electron beams can be ’\0 ¢
guide by a few kT of externally imposed B-field ILE, Osaka

#Simulation by Prof. Honrubia.

B

=2 KT

z,ext
1.01e+22 1.01e+22
9.45e+21 9.45e+21
8.82e+21 8.82e+21
8.19e+21 8.19e+21
7.56e+21 7.56e+21
'E‘ 6.93e+21 E 6.93e+21
n s 1 {63es21 S 6.3e+21
b § 5.67e+21 ; 5.67e+21
E 5.0de+21 E 5.04e+21
_3 = 44le121 =~ 4.41e421
CI I l [~ 1T8e2l  RA 378e421
3.15e+21 3.15e421
2.52e+21 2.52e+21
1.89e+21 1.89¢+21
1.26e+21 1.26e4+21
6.3e+20 6.3e+20
2 0 T T T T T T T T T wer ﬂ
0 10 20 30 40 50 60 70 80 90 995 99.5
T T L} T T 1 T .l T 1 .l T T T T T T T T
7 de-collimating 1R 703 1R
E 1 B 1.71e403 3 3 B 171403
60 1.43e+03 603 1.43e+03
_ field at interface i [ _ { B
863 863
= 504 q1 582 = 304 11 |s82
S 3 11 {3m ] E 301
g 404 E 19.9 b 404 E 19.9
e g 3 11 261 g E 2261
S S
30 41 |52 30 41 [542
= 3 RN EE & ] ERD B
-1.1e+03 “1.1e+03
20 = 31 1139403 20 — 31 |-130e+03
E -1.67e+03 E E -1.67e+03
104 4 B -1.95¢+03 10 4 B -195¢+03
E E -2.23e+03 E B -2.23e+03
O T T —— 2.51e+03 I s o S S (NS N 2.51e+03
0 10 20 30 40 50 60 70 80 90 995 0 10 20 30 40 50 60 70 80 90 99.5
Z (micron) Z (micron)

See details in a poster by T. Johzaki (IFE/P6-5, Thursday).




Suppression of Too Energetic REB Generation

1 KT B-field* was generated <¢ @
with a capacitor-coil target” and a ns-kJ laser. ILE, Osaka

*S. Fujioka et al., Sci. Rep. (2013).
#H. Daido et al., PRL (1985), C. Courtois et al., JAP (2005),

Photo of capacitor-coil target
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Suppression of Too Energetic REB Generation
Laser-generated REB was pinched
by externally imposed kT magnetic field.

@

Experimental setup Spatial profile of transmitted REB
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Suppression of Too Energetic REB Generation

: ¢
2D MHD-rad-hydro code is under development \0 0
for full simulation of B-assisted fast ignition scheme. ILE, Osaka

Computations by 2D MHD-Rad-Hydro code
(PINOCO-MHD)
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See details in the poster by H. Nagatomo (IFE/P6-6, Thursday). ,
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for efficient heating of fusion fuel.
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