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 Fast-Ignition Realization EXperiment (FIREX) was performed on 

GEKKO XII - LFEX laser facility.  

 

 There are three difficulties of the fast-ignition scheme, namely “shut-

in”, “diverging” and “ unstoppable” of REB. 

 

 All physical parameters of the REB were measured to evaluate 

absolutely the heating efficiency. 

 

 The most critical problem is generation of too energetic REB (> 15 

MeV) in a long-scale preformed plasma. 

 

 Plasma mirror will be installed to suppress generation of too 

energetic REB. 

 

 Guiding of REB was demonstrated with sub-kT external B-field. 
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Summary 



 

Three difficulties in fast-ignition scheme; 

“shut-in”, “diverging”, and “unstoppable” of REB. 

Shut-in 

A few MeV electrons, which may heat efficiently a fuel core, are absorbed in 

the cone wall itself. Most of these absorbed electrons are not ejected from the 

cone. 

Diverging 

Electron beam have a large divergence angle (> 100 deg.). Energy flux of the 

e-beam decreases significantly during transport. 

Unstoppable 

Too energetic electrons are generated by laser-plasma interactions, those 

electrons do not deposit their energy within the fuel. 

Heating laser 

Heating laser Fusion fuel 

cone 
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Fast Ignition Basic Experiment Platform 
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Divergence, energy distribution and flux of REB 

are measured by using x-ray convertor attached target. 
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Fast Ignition Basic Experiment Platform 



 

ρRmax = 54 mg/cm2 and ρmax = 22 g/cm3 are obtained with  

a plastic ball with asymmetric-spherical irradiation. 

2D simulation X-ray shadow 

of compressed plastic ball 
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Fast Ignition Basic Experiment Platform 
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Cross section of REB is measured by imaging 

Kα emission from a varied tracer layer. 
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Fast Ignition Basic Experiment Platform 



 

Absolute energy sepectrum of REB was obtained  

from hard x-ray spectrum with 2-T assumption. 

Fast Ignition Basic Experiment Platform 

Energy distribution of REB measured with ESM & HEXS 

  dE
EE

dEEf 


























15
exp

20

1

1
exp

20

19

TREB2 = 15 MeV 

determined from ESM  

TREB1 = 1 MeV 

determined from HEXS  

ESM signal 

TREB1 = 1 MeV  

(7.9% of EREB) 

TREB2 = 15 MeV  

(92.1% of EREB) 

Vacuum Electron Spectrum 
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Effect of sheath field 



Fuel cross section 
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Heating efficiency is evaluated with measured divergence, 

energy distribution and flux of REB. 

Summary of FI Basic Experiment 
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=
  

=
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(weighted for 1 & 15 MeV) 

=
  

25 % 

=
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!!! 

Heating efficiency estimation 
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Reduction of Te is essential for efficient heating. 
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See details in the poster by Z. Zhang (IFE/P6-2, Thursday).  



 

Too energetic electrons are generated in a long-scale 

plasma generated by foot of the heating laser pulse. ILE, Osaka 
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Suppression of Too Energetic REB Generation 
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Laser filamentation  

in a long scale plasma 
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Foot pulse can be removed by using plasma mirror. 

It is a challenge to install plasma mirror to kJ lasers system. ILE, Osaka 

10 

Suppression of Too Energetic REB Generation 
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See details in the poster by A. Morace (IFE/P6-4, Thursday).  



 

Laser-generated relativistic electron beams can be  

guide by a few kT of externally imposed B-field  

Bθ (T) 
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#Simulation by Prof. Honrubia. 
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Guiding REB with external B-field 

See details in a poster by T. Johzaki (IFE/P6-5, Thursday).  



 

1 kT B-field* was generated  

with a capacitor-coil target# and a ns-kJ laser. 

*S. Fujioka et al., Sci. Rep. (2013). 

#H. Daido et al., PRL (1985), C. Courtois et al., JAP (2005), 
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Suppression of Too Energetic REB Generation 



Measurable effect of the imposed B-field  

in FEB propagation  

CTR snapshots (@2 0) from the target rear side 
(targets: 200 m diameter, 50 m CH + 10 m Cu thickness) 

Evidence of FEB pinching at 1 ns 
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Laser-generated REB was pinched 

by externally imposed kT magnetic field. ILE, Osaka 

Spatial profile of transmitted REB 

Suppression of Too Energetic REB Generation 
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Experimental setup 



 

2D MHD-rad-hydro code is under development 

for full simulation of B-assisted fast ignition scheme. ILE, Osaka 

Magnetic field [G] 

Density profile [g/cm3] 

β value 

Pressure [dyn/cm2] 

Suppression of Too Energetic REB Generation 

See details in the poster by H. Nagatomo (IFE/P6-6, Thursday).  
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Computations by 2D MHD-Rad-Hydro code 

(PINOCO-MHD) 



 Fast-Ignition Realization EXperiment (FIREX) was performed on 

GEKKO XII - LFEX laser facility.  

 

 There are three difficulties of the fast-ignition scheme, namely “shut-

in”, “diverging” and “ unstoppable” of REB. 

 

 All physical parameters of the REB were measured to evaluate 

absolutely the heating efficiency. 

 

 The most critical problem is generation of too energetic REB (> 15 

MeV) in a long-scale preformed plasma. 

 

 Plasma mirror will be installed to suppress generation of too 

energetic REB. 

 

 Guiding of REB was demonstrated with sub-kT external B-field. 
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Summary 
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