Configuration Studies for an ST-based Fusion Nuclear Science Facility

IAEA Fusion Energy Conference, Oct. 13-18, 2014, St. Petersburg, Russia

J. Menard¹, M. Boyer¹, T. Brown¹, J. Canik², B. Covele³, C. D'Angelo⁴, A. Davis⁴,
L. El-Guebaly⁴, S. Gerhardt¹, S. Kaye¹, C. Kessel¹, M. Kotschenreuther³, S. Mahajan³,
R. Maingi¹, E. Marriott⁴, L. Mynsberge⁴, C. Neumeyer¹, M. Ono¹, R. Raman⁵
S. Sabbagh⁶, V. Soukhanovskii⁷, P. Valanju³, R. Woolley¹, and A. Zolfaghari¹

¹Princeton Physics Laboratory, Princeton, NJ, USA
²Oak Ridge National Laboratory, Oak Ridge, TN, USA
³University of Texas, Austin, TX, USA
⁴University of Wisconsin, Madison, WI, USA
⁵University of Washington, Seattle, WA, USA
⁶Columbia University, New York, NY, USA
⁷Lawrence Livermore National Laboratory, Livermore, CA, USA

There are several possible pathways from ITER to a commercial fusion power plant		Overview	PF coil set identified that supports combined Super-X + snowflake divertor for range of equilibria
This poster focuses on ST-based FNSF	FNSF = Fusion Nuclear Science Facility CTF = Component Test Facility	 Recent U.S. studies for ST-FNSF have focused on assessing achievable missions versus device size 	Components: TF coil PF coil Vessel Blanket • All equilibrium PF coils outside vacuum vessel $\kappa = 2.55, l_i = 0.82$
ITER F Blanket F	NSF/CTF R&D, T self-sufficiency R&D, T self-sufficiency R&D, T self-sufficiency	 Possible missions: Electricity break-even 	 Increased strike-point radius reduces B, q Strike-point PFCs also shielded by blankets 2nd X point/spowflake increases SOL line length
	Pilot Plant	 Motivated 2010-12 analysis of R=2.2m ST Pilot Plant — Tritium self-sufficiency (tritium breeding ratio TBR ≥ 1) Motivates present (2013-14) analysis of R=1m, 1.7m ST FNSF devices to address key questions: 	 PF coil set supports wide range of l_i: 0.4 – 0.8 Elongation and squareness change with l_i variation Fixed strike-point R, controllable B-field angle of incidence (0.5-5°)
Supporting Physics FNS	F/CTF with power-plant like	– How large must ST device be to achieve TBR ≥ 1?	

Options to increase TBR > 1

Potential for TBR > 1 at R=1.7m

$R_0 = 1m \text{ ST-FNSF}$ achieves TBR = 0.88

<u>Summary</u>: R = 1m and 1.7m STs with Γ_n = 1MW/m² and Q_{DT} = 1-2 assessed for FNS mission

- Ex-vessel PF coil set identified to support range of equilibria and Super-X/snowflake divertor to mitigate high heat flux
- 0.5MeV NNBI optimal for heating & current drive for R=1.7m
- Vertical maintenance approach, NBI & test-cell layouts identified
- Shielding adequate for MgO insulated inboard Cu PF coils
 Outboard PF coils (behind outboard blankets) can be superconducting
- Calculated full 3D TBR; TBR reduction from TBM, MTM, NBI

• Threshold major radius for TBR ~ 1 is $R_0 \ge 1.7m$

• R=1m TBR = 0.88 → 0.4-0.55kg of T/FPY → \$12-55M/FPY

 R=1m device will have lower electricity and capital cost → future work could assess size/cost trade-offs in more detail