

Configuration Studies for an ST-Based Fusion Nuclear Science Facility (FNSF)

Presented by Dr. Laila El-Guebaly

on behalf of:

J. Menard¹, M. Boyer¹, T. Brown¹, J. Canik², B. Covele³, C. D'Angelo⁴, A. Davis⁴, L. El-Guebaly⁴,
 S. Gerhardt¹, S. Kaye¹, C. Kessel¹, M. Kotschenreuther³, S. Mahajan³, R. Maingi¹, E. Marriott⁴,
 L. Mynsberge⁴, C. Neumeyer¹, M. Ono¹, R. Raman⁵, S. Sabbagh⁶, V. Soukhanovskii⁷, P. Valanju³,
 R. Woolley¹, A. Zolfaghari¹

¹Princeton Plasma Physics Laboratory, Princeton, NJ 08543
²Oak Ridge National Laboratory, Oak Ridge, TN, USA
³University of Texas, Austin, TX, USA
⁴University of Wisconsin, Madison, WI, USA
⁵University of Washington, Seattle, WA, USA
⁶Columbia University, New York, NY, USA
⁷Lawrence Livermore National Laboratory, Livermore, CA, USA

25th IAEA Fusion Energy Conference St. Petersburg, Russia 13-18 October 2014

This work supported by the US DOE Contract No. DE-AC02-09CH11466

There are several possible pathways from ITER to a commercial fusion power plant

This talk considers possible spherical tokamak (ST) Fusion Nuclear Science Facility (FNSF) options

Overview

- Recent U.S. studies for ST-FNSF have focused on assessing achievable missions versus device size
- Possible missions:
 - Electricity break-even
 - Motivated 2010-12 analysis of R=2.2m ST Pilot Plant
 - Tritium self-sufficiency (tritium breeding ratio TBR \geq 1)
 - Motivates present (2013-14) analysis of R=1m, 1.7m ST FNSF devices to address key questions:
 - How large must ST device be to achieve TBR \geq 1?
 - How much externally supplied T would be needed for smaller ST?
 - What are device and component lifetimes?
 - Fusion-relevant neutron wall loading and fluence
 - STs studied here access 1MW/m², 6MW-yr/m² (surface-avg. values)

• Physics design

Configuration, shielding, tritium breeding

Conclusions

Up/down-symmetric Super-X/snowflake \rightarrow q_{\perp -divertor} < 10MW/m² even under attached conditions (if integral heat-flux width $\lambda_{q-int} > 2mm$)

Configuration Studies for an ST-Based FNSF (J. Menard)

0.5 MeV NNBI favorable for heating and current drive (CD) for R=1.7m ST-FNSF

Outline

Physics design

Configuration, shielding, tritium breeding

Conclusions

R=1.7m configuration with Super-X divertor

ST-FNSF shielding and TBR analyzed with sophisticated 3-D neutronics codes

- CAD coupled with MCNP using UW DAGMC code
- Fully accurate representation of entire torus
- No approximation/simplification involved at any step:
 - Internals of two OB DCLL blanket segments modeled in great detail, including:
 - FW, side, top/bottom, and back walls, cooling channels, SiC FCI
 - 2 cm wide assembly gaps between toroidal sectors
 - 2 cm thick W vertical stabilizing shell between OB blanket segments
 - Ports and FS walls for test blanket / materials test modules (TBM/MTM) and NNBI

Heterogeneous OB Blanket Model, including FW, side/back/top/bottom walls, cooling channels, and SiC FCI

Two sizes (R=1.7m, 1m) assessed for shielding, TBR

Parameter:		
Major Radius	1.68m	1.0 m
Minor Radius	0.95 m	0.6 m
Fusion Power	162MW	62MW
Wall loading (a	av <mark>g)</mark> 1MW/m	² 1MW/m ²
TF coils	12	10
TBM ports	4	4
MTM ports	1	1
NBI ports	4	3
Plant Lifetime	~20 yea	ars
Availability	10-50%	6 Full Power
	30% avg	Years (FPY)

Peak Damage at OB FW and Insulator of Cu Magnets

3-D Neutronics Model of Entire Torus

Mapping of dpa and FW/blanket lifetime (R=1.7 m Device)

TBR contributions by blanket region

R=1.7m configuration

Impact of TBM, MTM, NBI ports on TBR

Options to increase TBR > 1

- Add to PF coil shield a thin breeding blanket (Δ TBR ~ +3%)
- Smaller opening to divertor to reduce neutron leakage
- Uniform OB blanket (1m thick everywhere; no thinning)
- Reduce cooling channels and FCIs within blanket (need thermal analysis to confirm)
- Thicker IB VV with breeding

Potential for TBR > 1 at R=1.7m

$R_0 = 1m \text{ ST-FNSF}$ achieves TBR = 0.88

- 1m device cannot achieve TBR > 1 even with design changes
- Solution: purchase ~0.4-0.55kg of T/FPY from outside sources at \$30-100k/g of T, costing \$12-55M/FPY

<u>Summary</u>: R = 1m and 1.7m STs with Γ_n = 1MW/m² and Q_{DT} = 1-2 assessed for FNS mission

- Ex-vessel PF coil set identified to support range of equilibria and Super-X/snowflake divertor to mitigate high heat flux
- 0.5MeV NNBI optimal for heating & current drive for R=1.7m
- Vertical maintenance approach, NBI & test-cell layouts identified
- Shielding adequate for MgO insulated inboard Cu PF coils
 Outboard PF coils (behind outboard blankets) can be superconducting
- Calculated full 3D TBR; TBR reduction from TBM, MTM, NBI
- Threshold major radius for TBR ~ 1 is $R_0 \ge 1.7m$
- R=1m TBR = 0.88 → 0.4-0.55kg of T/FPY → \$12-55M/FPY
- R=1m device will have lower electricity and capital cost → future work could assess size/cost trade-offs in more detail

Backup slides

Free-boundary TRANSP/NUBEAM used to compute profiles for 100% non-inductive plasmas with Q_{DT}~2

R=1.7m ST-FNS facility layout using an extended ITER building

Summary of ST-FNSF TBR vs. device size

R=1.7m: **TBR ≥ 1**

R=1.0m: **TBR < 1 (≈ 0.9)**

- 1m device cannot achieve TBR > 1 even with design changes
- Solution: purchase ~0.4-0.55kg of T/FPY from outside sources at \$30-100k/g of T, costing \$12-55M/FPY

FNSF center-stack can build upon NSTX-U design and incorporate NSTX stability results

•Like NSTX-U, use TF wedge segments (but brazed/pressed-fit together)

- Coolant paths: gun-drilled holes or grooves in side of wedges + welded tube

•Bitter-plate divertor PF magnets in ends of TF achieve high triangularity

– **NSTX data:** High δ > 0.55 and shaping S = q₉₅I_P/aB_T > 25 minimizes disruptivity

-Neutronics: MgO insulation can withstand lifetime (6 FPY) radiation dose

Bitter coil insert for divertor coils in ends of TF

MgO insulation appears to have good radiation resistance for divertor PF coils

R&D of a Septum Magnet Using MIC coil

Proceedings of the 5th Annual Meeting of Particle Accelerator Society of Japan and the 33rd Linear Accelerator Meeting in Japan (August 6-8, 2008, Higashihiroshima, Japan)

Kuanjun Fan^{1,A)}, Hiroshi Matsumoto^{A)}, Koji Ishii^{A)}, Noriyuki Matsumoto^{B)}
^{A)} High Energy Accelerator Research Organization (KEK)
1-1 OHO, Tsukuba, Ibaraki, 305-0801, Japan
^{B)} 2NEC/Token