Quasi-Coherent Fluctuations Limiting the Pedestal Growth on Alcator C–Mod: Experiment and Modeling

Ahmed Diallo, PPPL

Presented by J.W. Hughes, MIT PSFC

M. Greenwald, J. Walk, C. Theiler, J. Canik^a, P. Snyder^b, R. Churchill, B. LaBombard, M.L. Reinke, T. Golfinopoulos, E. Davis, S-G. Baek, I. Cziegler, L. Delgado-Aparicio^{*}, A. Hubbard, J. Terry, A.White, and the Alcator C-Mod team.

Plasma Science and Fusion Center, MIT, Cambridge, MA, USA.
 * Princeton Plasma Physics Laboratory, Princeton, NJ, USA.
 *Oak Ridge National Laboratory, Oak Ridge, TN, USA.
 ^bGeneral Atomics, San Diego, CA, USA.

October 15, 2014 IAEA-FEC 2014 St Petersburg, Russia EX/3-2

Alcator

C-Mod

Objective: Understanding the pedestal structure is crucial for performance prediction of fusion devices

- Substantial pedestal heights are critical for achieving high fusion power in ITER
- Link between pedestal height and global confinement well established by current experiments, transport modeling
 Predicted fusion power vs pedestal temperature

EPED predictive model provides a candidate mechanism for pedestal formation

- EPED: pedestal structure set by two key limiting instabilities:
 - non-local peeling-ballooning modes (PBM) trigger for edge-localized mode (ELM)
 - nearly local kinetic ballooning modes (KBM) regulates transport between ELMs
 - Combining these two constraints allows prediction of two unknowns, the pedestal height and width.
 Connor, PoP (1998); Wilson, PoP (2002);

EPED predictive model provides a candidate mechanism for pedestal formation

- EPED: pedestal structure set by two key limiting instabilities:
 - non-local peeling-ballooning modes (PBM) trigger for edge-localized mode (ELM)
 - nearly local kinetic ballooning modes (KBM) regulates transport between ELMs
 - Combining these two constraints allows prediction of two unknowns, the pedestal height and width.

Connor, PoP (1998); Wilson, PoP (2002); Snyder, PoP (2001); Snyder, NF (2011)

Can we find signatures of pedestal-limiting mechanisms between ELMs?

Theory predicts a sensitivity of KBM growth rate to β — observable between ELMs?

- Experimental goal: Identify and characterize *turbulent fluctuations* during the ELM cycle
- Expected measurable characteristics
 - Pedestal localized
 - Intermediate-n and electromagnetic mode
 - Sudden change in growth rate
 - Ion spatial scale (k ρ_s < 1)
 - Propagates in ion diamagnetic direction.

Alcator

Experimental collisionality scans are used to access Type I ELMy H-mode

Alcator

Radially resolved profiles may be either averaged over ELMs or binned by phase of ELM cycle

- ELM crash induces fast drop in Te and measurable rebuild time
- ELM perturbation to density is weaker

Pressure evolution is a test bed for KBM onset

Alcator

Various poloidally separated diagnostics provide edge fluctuation measurements between ELMs

Alcator

Quasi-coherent fluctuations (QCF) are observed on phase contrast imaging (PCI) spectrogram

PCI provides an estimate the radial component wavevector $k_R \implies k_\theta$ when mode is edge localized

Signatures of the QCF have been observed on gas puff imaging (GPI) between ELMs

- QCF is coherent in frequency and wavenumber
- Propagates in the electron direction in the lab frame

Alcator

GPI indicates strong radial localization of QCF

O-mode reflectometry localizes the QCFs to the subcentimeter scale density pedestal

12

Inter-ELM magnetic fluctuations track the edge electron temperature

- ECE shows prompt drop in Te.
- Each ELM event is followed by period of the pedestal-T_e increase and then saturation
 - Similar T_e dependence with washboard modes on JET Perez, PPCF 2004
- Mode *turn on* is correlated with the pedestal saturation
- β-limit is consistent with the expected KBM or microtearing growth rate dependencies

Diallo, PRL (2014)

Quasi-coherent fluctuations are low k_θ and propagate in electron diamagnetic direction (lab frame)

- k_θρ_s= 0.04 , n=10
- Two-point correlation using a double-head magnetic provides the wavenumber and propagation direction

Alcator

Wavenumbers from various diagnostics consistent with field-aligned perturbation

Alcator

Pedestal-localized fluctuations are consistent with an ion mode, localized to E_r well

- Width of pedestal, width of well in radial electric field ~ millimeters
- Uncertainty in flux surface mappings between poloidally separated diagnostics is of similar scale!
- Ongoing work to obtain accurate mapping of fluctuation radial location onto plasma flow profile
- Localization in the deepest part of the E_r well would imply fluctuations propagating in the ion direction

Alcator

ELITE calculations indicate that the experimental point Alcator is near both the nominal PBM and KBM thresholds

GS2 linear stability predicts low k_θρ_s < 0.2 mode propagating in the ion diamagnetic direction (plasma frame)

Experiments on C-Mod show evidence of QCF contributing to the pedestal dynamics between ELMs, suggestive of KBM

- Inter-ELM fluctuation measurements on C-Mod show onset of quasi-coherent density and magnetic fluctuations, *localized to pedestal*
 - frequency of approximately 300 kHz and spatial poloidal scale $k_{\theta}\rho_{s}$ ~ 0.04
 - electron diamagnetic propagation in lab frame; possibly ion-directed in plasma frame
- Results clearly show that the QCF is pedestal localized; its *onset* at a critical edge pressure (or ∇p) is suggestive of the kinetic ballooning mode (KBM)
 onset and saturation of this mode simultaneous with plateau in pedestal T_e
- Linear GS2 calculations indicate the most unstable mode is edge localized with $k_{\theta}\rho_s$ =0.03 and has KBM characteristics, consistent with experiment
- Open questions and further investigations
 - Why the relative coherence of the fluctuations?
 - Can we get at the transport driven by these fluctuations?
 - Can we improve our understanding with time-resolved profile evolution?