The neutronics analysis of blankets for the hybrid fusion neutron source.

A.V.Zhirkin, B.V. Kuteev, M.I.Gurevich, B.K.Chukbar, NRC "Kurchatov Institute", Moscow, Russia

Introduction

The design of a hybrid FNS "fusion-fission" system for manufacture of artificial nuclear fuel and nuclide transmutation is actual [1-4]. At a stage of outline designing the hybrid source of thermal neutrons with neutron multipliers on the basis of Be and Pb was considered as one of the FNS basic variants. The additional neutron generation was from fission reactions of 14 MeV neutrons with nuclei of ²³²Th or ²³⁸U and thermal neutrons with nuclei of ²³³U or ²³⁹Pu.

Objectives and Methods

To estimate the FNS opportunities in ²³³U and ²³⁹Pu production and ²³⁹Pu reprocessing the neutronics analysis was performed for the blankets with use of heavy water solutions of salts and oxides of uranium and thorium, the solid-state and molten salt blanket. The tritium generation and criticality analysis for electricity production were taken into account. FNS nuclear synthesis power was from 1 to 10 MW.

The MCNP-4 code with FENDL-2 and ENDF/B-6 point cross-section libraries was used for calculations.

Results

Vertical, horizontal and first wall section view of the basic FNS model

Table. Reaction rates and nuclear fuel production in FNS blankets. Fusion power is 1 n/s for reaction rates and 1.775[.]10¹⁸ n/s (5 MW) for fuel production.

The solid-state blankets with ²³⁸ U Blankets with uranium salt and thorium dioxide solutions in water and heavy water														
Variant	1	2	3	4	5	6	Variant	1	2	3	4	5	6	
Moderator	238U	238U	238UN	238UN+	238UN+	238UN+	Moderator	238UO2SO4	238UO2SO4	238UO2SO4	238UO2SO4	depUO2SO4	232ThO2	
material				1%(vol.) 239Pu	2%(vol.) 239Pu	3%(vol.) 239Pu	material	3H ₂ O +H ₂ O	3D ₂ O +D ₂ O	-				
Blanket	Be	238U	238UN	238UN+	238UN+	238UN+	Blanket	238UO,SO4	238UO,SO4	Be 15 cm	Be 15 cm	Be 15 cm	Be 15 cm	
material				1%(vol.) ²³⁹ Pu	2%(vol.) 239Pu	3%(vol.) 239Pu	material	3H ₂ O +H ₂ O	3D ₂ O +D ₂ O		²³⁸ U 3 cm			
(n,γ)- ²³⁸ U	1.825	3.475	2.517	3.658	4.813	6.610	(n,γ)- ²³⁸ U	7.812.10-2	3.892-10-1	4.190.10-1	3.762-10-1	5.260 10-1	6.264 10-1	
(n,f)- 238U	1.78-10-1	7.55.10-1	5.59 10-1	1.252	1.984	3.140	(n,f)- ²³⁸ U	1.440 10-2	1.723.10-2	3.867·10 ⁻³	2.169-10-3	2.078 10-1	1.220 10-3	
(n,2n)+(n ,3n) ²³⁸ U	9.58-10-2	4.37.10-1	3.57.10-1	3.62-10-1	3.69.10-1	3.80 10-1	(n,2n)+(n, 3n)- ²³⁸ U	1.384 10-2	1.762-10-1	3.312.10-2	1.823-10-2	3.476 10-2	3.675 10-2	
²³⁹ Pu, kg/year	40.41	76.94	55.73	80.99	106.6	146.3	(n,t)-6Li2O	-	-	9.408.10-1	7.921.10-1	9.684·10 ⁻¹	9.245 10-1	
							(n,t)-6Li	-	-	5.067.10-1	4.536-10-1	5.686 10 ⁻¹	3.359 10-1	
							(n,t)-total	-	-	1.448	1.246	1.537	1.260	
							³ H, kg/year	-	-	4.062.10-1	3.495-10-1	4.311.10-1	3.534.10-1	
							²³⁹ Pu, kg/year	1.730	8.617	9.277	8.329	11.64	13.58 (²³³ U)	
	1	The solid-st	ate blanke	ts with 232T	h		E	lankets wi	th natural l	ead mtPb a	nd molten	solt blanke	ts	
Variant	1	2	3	4	5	6	Variant	1	2	3			4	
Pipe	100%	FLiNaK	96%	96%	96%	100%	239Pu mass	939.5	939.5	939.5		704.6		
material,	²³² Th		²³² Th	²³² Th	²³² Th	²³² Th	in blanket,							
vol. %	D.O.	17.31.17	4% 250	4% 233U	4% ²⁵⁵ U	60	kg		120	12	10	12	10	
Material	D ₂ O	FLINaK	D ₂ O	^{na} Pb	96% 232m	CO_2	Moderator	тирь	"C		C		C	
vol. %					4% ²³³ U		materiai							
232Th	2272.4	1857.4	2181.5	2181.5	7861.5	2272.4	Blanket	natPb 15cm	^{nat} Pb 15cm.	FLiBe	15 cm	natPb	15 cm	
total							material	natPb+	natPb+2%	FLiBe+11	.4%(mas.)	F7LiBe+8.	55%(mas.)	
mass, kg								2% (mas.)	(mas.)	239Pu	239Pu 25 cm		239Pu 25 cm	
								239Pu 25cm	239Pu 25cm	FLiBe	20 cm	^{nat} Pb	20 cm	
								natPb 20 cm	^{nat} Pb 20 cm					
²³³ U total	0.0000	0.0000	145.75	145.75	525.26	0.0000	(n,γ)- ²³⁹ Pu	1.387	1.774	2.372.10-2		7.	06	
Moderator material	D ₂ O	D ₂ O	D ₂ O	^{nit} Pb	^{n#} Pb	CO ₂	(n,f)- ²³⁹ Pu	3.244	4.284	4.661.10-2		14	1.8	
Blanket material	Be	Be	Be	ш₽b	^{n#} Pb	Be	(n,2n)+(n, 3n)- ²³⁹ Pu	9.269 10-2	9.744·10 ⁻²	2.770 10-2		2.81.10-1		
(n,γ)— ²³² Th	6.11010-1	8.792.10-2	1.621	3.26010-1	6.95310 ⁻¹	3.74910-1	(n,t)-6Li2O	1.861	2.020	1.340 10-1		6.26		
(n, t)—6Li ₂ C	8.841-10-1	8.55010-1	1.905	6.51010-1	6.13010-1	8.712.10-1	(n,t)-6Li	3.952.10-1	4.825-10-1	6.664.10-2		1.94		
(n, t)—6Li	4.32610-1	3.75010-1	2.718	1.87310-1	1.65910-1	3.827.10-1	(n,t)-FLiBe	-	-	6.174.10-1		4.20-10-4		
(n, t)-total	1.317	1.230	4.623	8.383 10-1	7.78910-1	1.254	(n,t)-total	2.257	2.503	8.170-10-1		8.20		
(n,f) + (n,xn)	2.010-2	6.0-10-3	3.339	2.227.10-1	4.798-10-1	2.2.10-2	(n,γ)- ²³⁸ U	1.213	1.744	2.192.10-1		7.17		
spent ²³ U, kg/year	_	_	72.58	4.828	9:7/1	_	³ H production, kg/year	0.331-10-1	7.021.10-1	2.292-10-1		2.300		
Spent ²³³ U with respect	-	-	50	3	2	-	²³⁹ Pu production,	26.86	38.61	4.853		158.7		
to its initial mass, %							kg/year							
233U without	13.25	1.906	35.14	7.068	15.07	8.128	239Pu	104.6	136.3	2	171	49	0.2	
spent part, kg/year							reprocessin g, kg/year							
233U with	-	-	17.57	6.856	14.77	-								
spent part, kg/upar														
³ H, kg/year	3.693-10-1	3.45010-1	1.296	2.351-10-1	2.18510-1	3.518-10-1	1							

Conclusions

The best result in the nuclear fuel production and spent fuel reprocessing is obtained for the molten salt blankets using natural Pb and FLiBe. In these blankets it is possible to install an operating mode with keff ~ 0, 95 if the thermal neutron spectrum is prevailed. But molten Pb can't move inside pipes at presence of an electromagnetic field. So the blanket design is extremely problematic.

Use of the fast neutron spectrum for the production or reprocessing of fissile isotopes in all blankets does not take an advantage over use of the thermal neutron spectrum because the fission reaction rate is essentially decreased. The key problem for the solid-state blankets is extraction of a considerable quantity of fission products, and for the blankets using heavy water solutions of salts or oxides of uranium and thorium is radiolysis and sedimentation of radio toxic elements on walls of vessels.

Bibliography

[1[1] E. P. Velikhov, V. A. Glukhikh, V. V. Guriev, et al., "Hybrid thermonuclear tokamak reactor for the production of fissile fuel and electricity," Atomic Energy, Vol. 45, No. 1, 3–9 (1978). [2] E. A. Azizov, G. G. Gladush, A. V. Lopatkin, and I. B. Lukasevich, "Tokamak based hybrid systems for fuel production and recovery from spent nuclear fuel", Atomic Energy, Vol. 110, No. 2, June, 2011 (Russian Original Vol. 110, No. 2, February, 2011). [3] E. P. Velikhov, E. A. Azizov (presented by B. V. Kuteev), "On Russion Strategy for Controlled

Fusion", MFERW, Princeton, NJ, USA, September 7-10, 2011.

[4] B. V. Kuteev, "Fusion for Neutrons as Necessary Step to Commercial Fusion", MFERW, Princeton, NJ, USA, September 7-10, 2011.