TH/2-3

Gyrokinetic simulation of blob transport and divertor heat-load

C.S. Chang¹, J. Boedo², M. Churchill¹, R. Hager¹, S. Ku¹, J. Lang¹, R. Maingi¹, <u>Scott E. Parker³</u>, D. Stotler¹, S.J. Zweben¹

¹Princeton Plasma Physics Laboratory, Princeton, NJ ²University of California, San Diego, CA ³University of Colorado at Boulder, Boulder, CO

SciDAC-3 Center for Edge Physics Study

Outline

- Introduction of the problem
- Introduction to XGC1
- Gyrokinetic edge blobs
- Divertor heat-load footprint and I_P scaling from XGC1
- Status of the XGC1 development
- Conclusion and discussion

Core Gyrokinetic Turbulence Code

GEM (U of Colorado) models PBM and KBM in DIII-D H-mode pedestal (Wan PRL 2012) and nonlinear ELM (Wan PoP 2013)

Edge Gyrokinetic Turbulence Code XGC1 - full x-point, neutrals

Divertor heat-load width is a serious issue for ITER and future tokamak reactors

- If extrapolated from the present-day trend ($\propto 1/I_P$),
 - ♦ Divertor heat-load width in ITER would be $λ_q$ ≈1mm when mapped back to the outboard midplane, and
 - The localized heat-load would far exceed the material tolerance limit.
- Unanswered critical questions:
 ♦ Will the 1/I_P trend hold for ITER?
 ♦ How can we control λ_q?
- Physics understanding is needed for reliable and predictive answers.
- Scrape-off plasma is in nonequilibrium kinetic state
 - Kinetic neoclassical + turbulence simulation is needed
 - ♦ Difficult to simulate!

Total-f Gyrokineic code XGC1 in diverted geometry

XGC1: X-point included Gyrokinetic Code 1

- Edge plasma is in a non-thermal equilibrium state and requires a non-perturbative kinetic simulation
 - Heat and momentum (and particle) flux from the core
 - Losses to material wall with neutral recycling, radiative loss, wall-sheath
 - Magnetic separatrix geometry: Orbit loss and X-point transport
 - Steep pedestal, with the gradient-width being ~ ion banana width
 - Blobs: $(\delta n_{max} \delta n_{min})/\langle n \rangle = \mathcal{O}(1)$
 - Non-Maxwellian, requiring nonlinear Fokker-Planck collisions.

Nonlocal self-organization and overlapping multi-scale physics

- Neoclassical, turbulence, (logical) sheath, and neutral particles with atomics physics (and wall) self-organize together non-locally
- Core-edge self-organization: artificial core-edge boundary is undesirable.

XGC1 is designed to study such plasmas

- -- Requires extreme scale computing (2014 total award ~300M hrs)
- -- Efficient scalability to extreme scale (maximal Titan/Mira/Edison)

XGC1 determines the E_r profile automatically, from the multiscale physics of orbit loss, neoclassical, turbulence, neutral particles and (logical) wall-sheath.

Equilibrium E_r evolution and feedback is important in the edge, while being more passive in the core.

→ E_r in edge needs to be "determined," instead of being calculated from given plasma n, T, V profiles using force balance, as usually done in core.

DIII-D H-mode plasma with ITG turbulence

λ_q versus I_p

- λ_q : Divertor heat-load width mapped back to outboard midplane
- Three calculated λ_q points approximately line up with the $1/I_p$ curve
- The I_P = 0.68 & 1.26 MA cases are manufactured from the 0.97MA case by multiplying a uniform constant to B_P , while keeping the plasma profiles and the flux surface shape unchanged.
- Agrees with the neoclassical scaling found for DIII-D, NSTX and C-Mod from XGC0 in 2010 [2010 DOE JRT Report]
- Agrees with the simple heuristic neoclassical argument by R. Goldston [Nucl.Fusion, 2012]

lp (MA)	λq (mm)
0.68	7.4
0.97	5.1
1.26	4

As soon as the drift-kinetic electrons were added to the gyrokinetic ions, the edge blobs appeared.

- DIII-D H-mode 96333
- The simulation ended at ~ 1ms.
- No core-edge boundary used
- Birth and life of the edge blobs being studied.
 - ♦ Birth of blobs through ExB shearing can be seen.

Synthetic diagnostics

- Synthetic blob detection/analysis software has been developed (J. Lang and M. Churchill)
 - Blobs are found to carry not only the mass, energy, and momentum but also the vorticity that could affect the L-H and H-L transitions.
- Data from an extreme scale XGC1 simulation is too big for I/O.
 - We are placing the synthetic diagnostics in the code (HPC compute memory) for in situ analysis.
 - Poloidal blob speed from XGC1 is similar to experimental observation in H-mode (Boedo et al., Phys. Plasmas 2003)

Poloidal potential variation in the scrape-off layer is also calculated in XGC1 (with nonlinear collisions and neutrals)

Divertor heat-load width in attached plasma

- Heat-load footprint has been measured from the three XGC1 simulation points
 - DIII-D H-mode shot #096333
- Electrostatic blobby turbulence, neoclassical physics and nonlinear collisions are included self-consistently.

 Calculated heat-load width and I_P scaling are similar to experiment

◦ XGC1: λ_q (midplane) ∝1/I_P

 Simulation results should be compared with blue experimental dots (2.0 < B_T < 2.2 T)

1 ms simulation time for approximate steady state? Non-thermal kinetic equilibration process is much faster than the fluid equilibration process based on thermal equilibrium diffusion coefficients.

λ_q is dominated by ions in DIII-D

- $\lambda_q = 5.1 \text{ mm at}$ I_P=0.97MA
 - Neutral particles play an insignificant role in this attached plasma
- λ_q is closer to ion orbit spreading width (~3mm, represented by the red flat top) than the radial blob size (>1cm)

Heat-load spreading by blobs (represented by λ_{qe} ~2mm in the figure) is masked by the ion orbital spreading.

Physical Interpretation of the DIII-D results

 Fast parallel particle motion allow only partial spreading of the heat-load width by blobs before hitting divertor plates

 $-\lambda_{qe} \sim 2 \text{ mm}$

- Ion orbit excursion Δ_i dominates over the δExB convective spreading by blobs
- In ITER, Δ_i ≤1mm, but the meso-scale blob size ∝(ρ_ia)^{1/2} may remain similar

→ Dominance of Δ_i could be lost → breaking of the 1/I_P scaling?

An ITER simulation to be done soon to answer this important question

NSTX - Collisional effects on λ_{α}

- If the neoclassical orbit width is important for prediction of $\lambda_q,$ shouldn't the collisions broaden $\lambda_q?$
- NSTX without collisions ($\lambda_q \propto 1/I_P^{0.8}$)
- Collisions are found to broaden λ_q significantly ($\lambda_q \propto 1/I_P^{1.45}$)

Status of the XGC1 development

- XGC1 is acquiring E&M capability, including reduced MHD modes
 - Heat-load from gyrokinetic
 ELMs is to be included
 - E&M ballooning mode effect on heat-load is to be included
- Kinetic shear-Alfven modes and the ITG-KBM transition have been verified

No DIII-D L-mode shortfall in XGC1 with full edge model

2014 INCITE, using 1/3 Mira capacity. 32-way OpenMP threading.

Conclusion and Discussion

- In the present-day tokamak devices, the previous neoclassical XGC0 and gyrokinetic XGC1 study show nearly $\lambda_q \propto 1/I_P$
 - It appears that neoclassical orbit effects are large and dominant relative to the blob spreading of $\lambda_{\rm q}.$
- However, in ITER where the neoclassical ion orbit excursion is ≤1mm, and the 1/I_P trend may fail due to the blob size ∝ (ρ_ia)^{1/2} effects
 - These important XGC1 simulations are to be done soon in an ITER model plasma
- Electromagnetic capability is coming online in XGC1
 - Nonlinear evolution of ELM (nonlinear saturation of PBM) impact on divertor heat-load
 - Other electromagnetic turbulence effects
- XGC1 with full edge model does not show DIII-D L-mode shortfall

Relationship between midplane ∇p -width and λ_q ?

