

Gyrokinetic study of edge blobs and divertor heat-load footprint

C.S. Chang¹, J. Boedo², R. Hager¹, S. Ku¹, J. Lang¹, R. Maingi¹, Scott E. Parker³, D. Stotler¹, S.Z. Zweben¹, **USA**

- Heat-load footprint has been measured in the full-f gyrokinetic code XGC1
 - DIII-D H-mode shot #096333 in realistic diverted magnetic geometry
- Effect of electrostatic blobby edge turbulence has been accounted for self-consistently
- Gyro-kinetic ions, drift-kinetic electrons and Monte Carlo neutral particles are included

- The heat-load width and the I_P scaling from XGC1 are similar to experiment
 - ∘ XGC1: λ_q (midplane) $\propto 1/I_P$
- Neoclassical orbit excursion appears to dominate λ_α in this plasma
- Spreading of λ_q by blobs is expected to become important in ITER: mesoscale $(\rho_l a)^{1/2}$ ~similar, while Δ_{banana} \searrow