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Density Gradient Driven Trapped Eleciron Mode Turbulence

Regulates H-Mode Inner Core as T_.2T, and at Low Torque

 Dedicated H-Mode experiments on Alcator C-Mod and DIlI-D demonstrate local
control of density peaking with strong electron heating

 TEM is only unstable mode in H-Mode inner core with moderately peaked density

— When T_=2T. at low torque & collisionality (similar to burning plasmas)
— Long wavelength; drives strong parficle and electron heat fluxes

- Discovered and confirmed a new nonlinear TEM threshold that increases strongly
with collisionality

 New coherent TEMs observed and reproduced by GYRO with new synthetic
Doppler Backscattering diagnostic

* TEM provides new mechanism for burn self-regulation:

— a-heating would flatten density profile, reducing fusion power
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New Nonlinear TEM Ciritical Density Gradient

Increases Strongly with Collisionality

TEM Critical Density Gradient (V T=0)
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 Dedicated H-Mode TEM experiments in C-Mod and DIII-D test the TEM
nonlinear upshift over an order of magnitude variation in collisionality
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Density Gradient Driven TEMs Produce

Strong lon-scale Density Fluctuations

GS2 gyrokinetic simulation of TEM turbulence

. , , : in Alcator C-Mod experiment with electron heating
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Local Core Density Fluctuations Increase Strongly with

Electron Heating in Both C-Mod and DIlI-D

%g T,y Mag. axis « Phase contrast imaging on C-Mod
o 16 shows density fluctuations track
}:g i : temperature
50 — - E
o EPCI(/dlfie) .
g 40FDensiy Fuct, Coherent Fluctuations
o 80w at TEM Wavenumbers
i Wl Kops~ 0.5
3 g’
N 200;— | i | el 1 = 0.2
< 150F ' | | SR L[|
100F g A
50§ B L g 10° S 0.2
3 E E 10'4 g )
3 off aX|$ } L 0.4-
= 2 on ads | | 05 2 FCH)Power --
1t RF Power | ) 1 (MW
of . . f ‘ [ \ o'o Linear
130 1.35 140 145 150 155 1.60 1.65 2.9 3.1 scale

Time (s) Time (s)
« New coherent modes observed on Doppler
DIll-D Backscattering in DIlI-D at TEM wavelengths
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Density Profile Locally Flattened by Modulated ECH in DIII-D
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* Density is modulated by ECH
only for p < 0.5, where GYRO
analysis shows TEM dominant

Dili-D
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Electron Heating Raises T, by ~50%

in Both C-Mod and DIlI-D Experiments
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Increased Transport in C-Mod ITB During On-axis Heating

Pulses is Consistent with GS2 Nonlinear Simulations of TEM

* Density gradient limited by effective nonlinear TEM critical density gradient
« Energy flux increases 5x during heating, dominated by eleciron energy flux

Fluxes During on-axis heating (1.210 s)
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* GS2 matches TRANSP heat flux when density gradient matches

@= tor nonlinear TEM critical density gradient
)
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In DIlI-D, ECH Raises T./T, from 0.5 to 1.0, Destabilizing TEM;

Provides Mechanism for Density Flattening with ECH

TEM Critical Density Gradient
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Nonlinear GYRO TEM Simulations Closely Match Fluxes

Inferred from Transport Analysis at p=0.30 with ECH

Particle Flux
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 TEM nonlinear upshift apparent
— Reduced at lower collisionality
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=
— GYRO shows 35% =
 Zonal flows are dominant in the 0
[ (] [ ] 2
upshift regime, close to the linear lon Heat Flux
threshold '
=17
- a/Lcrit
n
0 . ll . f . . .
04 05 06 07 08 09 10
10 mg! !slu:g Ernst/IAEA EX/2-3/Oct. 2014

—— all
35% upshift



Shape of DBS Frequency Specirum During ECH Reproduced by

GYRO TEM Simulation with New DBS Synthetic Diagnostic

DBS fluctuation spectrum TEM growth rate (GYRO, DBS wtd.)
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* New synthetic DBS diagnostic reproduces DBS frequency spectrum for first time
in DIII-D

« Uses Gaussian spread in DBS wavenumbers based on 2D full wave simulations
[J. Hillesheim et al., RSI (2010)]

* Accurate calculation of kP2 =n q(p,0) / r.,(p.0) in shaped geometry

Dili-D
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Local DBS Measurement Reveals Coherent Fluctuations at TEM

Wavelengths, which Intensify During ECH

Coherent Fluctuations
at TEM Wavenumbers
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« Separated in frequency by constant interval, corresponding to adjacent toroidal
mode numbers n:
2mfy o, = KPP v = nQy n=...,18,19, 20,

- DBS PSD response for this case: R(n) =exp[-(n-19)3/182]
Dil-D
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Nonlinear GYRO Simulations Reproduce Coherent

TEM Fluctuations Seen on DBS, as Well as Spectral Decay

Fluctuation spectrum during ECH . Fluctuation Spectrum During ECH
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« Coherent modes in GYRO correspond to resolution used, An = 2
— Match every second coherent mode seen on DBS (for which An = 1)
* High resolution GYRO simulations in progress with An =1

* Doppler shift in GYRO increased by 20% over CER measurement, based on
interval between coherent modes (within uncertainties)

Dili-D
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Density Gradient Driven TEM Turbulence Shown to Regulate

Particle and Thermal Transport in H-Mode Inner Core

 Sirong sensitivity to electron temperature allows central electron heating
to locally contirol density peaking.

 New core localized, coherent fluctuations observed in DIlI-D at TEM
wavelengths, when TEM is found to be sole instability

— Intensify during ECH, while the density profile is locally flattened
— Reproduced in GYRO nonlinear TEM simulations

- Collisionality dependence of TEM nonlinear upshift experimentally
confirmed

- TEM relevant when density moderately peaked, T, ~ T, low collisionality

— a-heating would flaften density profile, reducing fusion power (self-regulating)
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