First-principles theory-based scaling of the SOL width in limited tokamak plasmas, experimental validation, and implications for the ITER start-up

Paolo Ricci,

F.D. Halpern¹, J. Loizu¹, S. Jolliet¹, A. Mosetto¹, F. Riva¹, C. Wersal¹, A. Fasoli¹,
I. Furno¹, B. Labit¹, F. Nespoli¹, C. Theiler¹, G. Arnoux², J.P. Gunn³, J. Horacek⁴,
M. Kočan⁶, B. LaBombard⁷, C. Silva⁸

I) CRPP, EPFL, Switzerland; 2) CCFE, UK 3) CEA, France 4) Institute of Plasma Physics, Czech Republic
 6) ITER Organization, 7) MIT, USA; 8) IPFN, IST, Portugal

ITER start up and ramp down will be limited

SOL width?

- First-principles analytical scaling of SOL width
- Theory vs experimental observations
- First-principles simulations
- Predictions and implications for ITER

$\nabla_r \Gamma_r \sim \nabla_{\parallel} \Gamma_{\parallel}$

$$\rightarrow L_p \simeq \frac{qR}{c_s} \left(\frac{\gamma}{k_\theta}\right)_{\max}$$

Instability driving turbulence depends mainly on q, ν, \hat{s} .

Instability driving turbulence depends mainly on q, ν, \hat{s} .

Instability driving turbulence depends mainly on q, ν, \hat{s} .

Mosetto et al., PoP 2013

Instability driving turbulence depends mainly on q, ν, \hat{s} .

Ballooning scaling, good agreement with experiments

In SI units:

$$L_p \simeq 7.22 \times 10^{-8} q^{8/7} R^{5/7} B_{\phi}^{-4/7} T_{e,\text{LCFS}}^{-2/7} n_{e,\text{LCFS}}^{2/7} \left(1 + \frac{T_{i,\text{LCFS}}}{T_{e,\text{LCFS}}} \right)^{1/7}$$

1 / 17

Halpern et al., NF 2013, NF 2014

Ballooning scaling, good agreement with experiments

SOL width – comparison with ITPA database

[Experimental results: ITPA Divertor and SOL topical group, PPCF to be submitted, data courtesy of R.A. Pitts/J. Horacek; comparison with theoretical model: Halpern et al, PPCF, to be submitted]

SOL width – comparison with ITPA database

[Experimental results: ITPA Divertor and SOL topical group, PPCF to be submitted, data courtesy of R.A. Pitts/J. Horacek; comparison with theoretical model: Halpern et al, PPCF, to be submitted]

Recent measurements: 2 scale lengths

Infrared Measurement in TCV

Nespoli et al., JNM, submitted Kocan et al., NF, submitted

Recent measurements: 2 scale lengths

Infrared Measurement in TCV

Nespoli et al., JNM, submitted Kocan et al., NF, submitted

Recent measurements: 2 scale lengths

Infrared Measurement in TCV

Nespoli et al., JNM, submitted Kocan et al., NF, submitted

Need nonlinear simulations...

3D drift-reduced Braginskii equations, no separation between equilibrium and fluctuating quantities

Ricci et al., PPCF 2012; Loizu et al., PoP 2012; Riva et al, PoP 2014

C-Mod fluctuation properties well captured

Halpern et al, PPCF, submitted

C-Mod simulations: pressure profile

C-Mod simulations: pressure profile

Halpern et al., NF 2013, NF 2014

C-Mod simulations: pressure profile

C-Mod simulations: 2 pressure scale lengths

C-Mod simulations: 2 pressure scale lengths

Different turbulent properties in near and far SOL

Different turbulent properties in near and far SOL

Different turbulent properties in near and far SOL

Predictions and implications for ITER

The ballooning scaling, in SI units:

$$L_p \simeq 7.22 \times 10^{-8} q^{8/7} R^{5/7} B_{\phi}^{-4/7} T_{e,\text{LCFS}}^{-2/7} n_{e,\text{LCFS}}^{2/7} \left(1 + \frac{T_{i,\text{LCFS}}}{T_{e,\text{LCFS}}} \right)^{1/7}$$

SOL width?

- Use of a first-principles approach
- Analytical scaling derived, good agreement with one scale length fit of experiments and simulations
- Narrow feature recovered in simulations
- ITER prediction one scale length fit of several centimeters; further analysis needed for narrow feature

Tools ready to investigate more advanced SOL configurations

crpp.epfl.ch/research_theory_plasma_edge

The GBS code, a tool to simulate SOL turbulence

 $T_{\rm e}, T_{\rm i}, \Omega$ (vorticity) \implies similar equations

$$V_{\parallel e}, V_{\parallel i} \implies$$
 parallel momentum balance
 $\nabla_{\perp}^{2} \phi = \Omega, \ \nabla_{\perp}^{2} \psi = j_{\parallel}$

Solved in 3D, dynamics resulting from: plasma outflow, turbulent transport, and parallel losses

The GBS code, a tool to simulate SOL turbulence

Simulations contain physics of ballooning modes, drift waves, Kelvin-Helmholtz, blobs, parallel flows, sheath losses...

RBM estimate works with ITPA database

Limited SOL transport increases with β and ν

GBS code: a tool to simulate SOL-like place

