

Surface Heat Load Modelling on Tungsten Monoblocks in the ITER Divertor

FIP/1-2 25th Fusion Energy Conference October 13-17, 2014 Saint Petersburg, Russian Federation

J. P. Gunn,¹ S. Carpentier-Chouchana,² R. Dejarnac,³

F. Escourbiac,⁴ T. Hirai,⁴ M. Kočan,⁴ V. Komarov,⁴ M. Komm,³

A. Kukushkin,⁴ R. A. Pitts,⁴ Z. Wei⁵

¹ CEA, IRFM, F-13108 Saint-Paul-Lez-Durance, France.

- ² EIRL S. Carpentier-Chouchana, 13650 Meyrargues, France.
- ³ Institute of Plasma Physics, AS CR v.v.i., Czech Republic.

⁴ ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067

St. Paul Lez Durance Cedex, France

⁵ Southwestern Institute of Physics,P.O.Box 432, Chengdu, Sichuan 610041, China.

Full-W divertor from start of ITER operations Outstanding issue now is W monoblock shaping design Decision to be taken by end of 2015

Seeking a design solution that will withstand highest stationary loads and mitigated ELMs during baseline burning operation DT at end of first divertor lifetime (but non-mitigated ELMs a problem already for low active phases)

- heat load specifications
- > shaping solutions under investigation
- ➢ ion orbit modelling of heat deposition
- thermal response of monoblocks to inter-ELM heat loads
- > penetration of ELM energy into poloidal and toroidal gaps

Full tungsten divertor in ITER: water-cooled W monoblocks (MB) MB design must satisfy heat load specifications

Steady State (SS) inter-ELM detached regime	10 MW/m ²	
Slow Transient (ST) reattachment (300 events)	20 MW/m² up to 10 s	
Fast Transient (FT) mitigated ELMs	0.6 MJ / ELM ~ 0.5 MJ/m ²	

These specifications correspond to heat flux perpendicular to an ideal, axisymmetric divertor with no castellations or MB shaping.

Question: what will be the thermal response if we expose shaped MBs to a physicsbased model of divertor plasma that delivers the specified power loads?

-subject of contract SSA-29 between CEA and ITER (2013)

DESIGN: MB TOROIDAL CHAMFERING + TARGET TILTING TO PROTECT POLOIDAL LEADING EDGES

schematic view of divertor illustrating target tilting and monoblock chamfer

GUIDELINES FOR STATIONARY TARGET POWER FLUX PROFILES FROM SOLPS SIMULATIONS

MONOBLOCK GEOMETRY AND B-FIELD ORIENTATION

How do we go about modelling power deposition to the monoblock surface?

1) For a given magnetic field angle and $q_{\rm rad}$, we calculate the corresponding $q_{\prime\prime}$

2) We then launch that $q_{//}$ at the monoblocks and calculate the local heat flux at all the surfaces of <u>shaped monoblocks</u> using 3D ion orbit simulations.

-parallel speed distribution from kinetic model of SOL -perpendicular speed distribution assumed to be Maxwellian

STRATEGIES TO PROTECT LEADING EDGES WORK BUT AT EXPENSE OF INCREASED T_{SURF}

STRATEGIES TO PROTECT LEADING EDGES WORK BUT AT EXPENSE OF INCREASED T_{SURF}

STRATEGIES TO PROTECT LEADING EDGES WORK BUT AT EXPENSE OF INCREASED T_{SURF}

ELMs deposit a huge amount of energy in a very short time. ELM mitigation requirements based on avoidance of melting

These numbers were derived for an ideal divertor surface with no local shaping

NB: UNCONTROLLED ELMS (~a few MJ / ELM) already potentially problematic in non-active phases \rightarrow not just a problem for mitigated ELMs in nuclear phase

Based on 3D ion orbit calculations (now being verified by PIC), Monoblock shaping in the ITER W divertor appears mandatory to *avoid leading edge melting* under highest stationary loads in burning plasmas BUT

Leads to higher surface temperatures on main wetted areas

AND

ELMs can be immune to shaping

→ experiments urgently needed with relevant dimensionless scaling (Larmor radius / height of surface features)

HOWEVER

load specifications could be too conservative → work ongoing PHYSICS OF EDGE LOADING AT GLANCING ANGLES NOT COMPLETELY UNDERSTOOD

- → JET lamella melting experiment (Guy Matthews, EX/4-1 Wednesday afternoon)
- → Further experiments planned or underway on ASDEX-Upgrade, MAGNUM-PSI, COMPASS, JET, ….

ITER INTENDS TO TAKE A MONOBLOCK SHAPING DECISION BY END 2015.

STRATEGIES TO PROTECT LEADING EDGES WORK BUT AT EXPENSE OF INCREASED T_{SURF}

target tilting	gaps	shaping	0.5 mm inter-PFU gaps T _{peak} / T _{center}		With shaping
			SS	ST	steady state loads: →W recrystallization
no	no	no	987/846	2055/1767	
yes	yes	no	2604/1066	LE melting	slow transient loads:
yes	yes	yes	1497/1139	3406/2680	
					→marginally close to meltin

thermal response vs radiated fraction (for shaped OVT MBs with target tilting)

ION ORBIT CALCULATION AT TOROIDAL GAPS PREDICTS EDGE MELTING AT BOTH IVT AND OVT

