25th IAEA Fusion Energy Conference, 13-18 Oct. 2014, Saint Petersburg, Russia

L→H Transition Criterion: A 3D Nonlinear Simulation Study

¹National Fusion Research Institute, Korea ²CMTFO and CASS, UCSD, USA ³Lawrence Livermore National Laboratory, USA

Introduction

- L-H transition phenomenology
 - Sudden bifurcation to high confinement (H-mode)
 - Studied for ~32 years
 - Theory perspective-based on transport bifurcation and profile self-organization via predator-prey dynamics
 - Main paradigm: ExB flow shear(ω_{ExB}) suppression of the turbulence
 - $\checkmark \omega_{FxB} > \gamma_{lin} \rightarrow$ turbulence suppressed and H-mode sustained
 - Unknown
 - ✓ Trigger mechanism
 - Transition criterion based on microphysics (need predictive) capability)

Main questions

- What triggers the transition?

 To be explained in the present talk
- How the transition evolves?
- How predict transition, and power threshold?

H-mode and L-H transition

>H-mode: enhanced plasma confinement with edge transport barrier (ETB)

≻H-mode history/phenomenology (1982-2014)

- ✓ Wagner (1982): first discovered at ASDEX-U
- \checkmark Er shear layer at edge, fluctuation decrease, existence of power threshold (P_{th})
- ✓ Predator-Prey paradigm [Diamond, PRL, 1994; Kim & Diamond, PRL 2003]
 - Zonal flow (ZF): predator, turbulence: prey, mean flow: another predator
 - ZF triggers the transition, while mean flow sustains the barrier

Pedestal Height (β_{ped})

Experimental evidence of a role of turbulence-driven (ZF) flow in triggering L-H transition

- Tynan (2013) and Manz (2012)
 - ✓ Normalized Reynolds power

$$R_T = \frac{\left< \tilde{v}_r \tilde{v}_\theta \right> \left< V_{E \times B}^{LF} \right>'}{\gamma_{eff} \left< \tilde{v}_\perp^2 \right>}$$

meaning a ratio of kinetic energy transfer from turbulence into ZF to the turbulence input power

- ✓ Turbulence collapse condition $R_T > 1$
- ✓ Experimental results show that L-H transition occurs when $R_T > 1$
- Yan (2014) reported a similar finding at DIII-D

Main results

- 3D flux-driven simulation of edge transport barrier (ETB) formation shows that
 - 1. ETB forms once input power exceeds a threshold value
 - \checkmark Steep pressure pedestal , deep Er well appear when P_{in} > P_{th}
 - ✓ Q versus - ∇ P curve shows a feature of first-order phase transition
 - 2. ETB transition is triggered by turbulence-driven flow shear
 - \checkmark R_T > 1: criterion for the trigger of the transition
 - Burst of the turbulence-driven flow shear appears just prior to the transition point
 - 3. Time sequence of the transition is clear
 - 1) Peaking of the normalized Reynolds power ($R_T > 1$):
 - 2) Turbulence suppressed and pressure gradients increased
 - 3) Mean flow shear ($\langle V_E \rangle'$ from ∇P) rises: sustain H-mode

Microphysics (R_T) may govern L \rightarrow H transition!

3D model using BOUT++

- Electrostatic model with resistive ballooning (RBM) turbulence
 - ✓ Two field (vorticity, pressure) reduced MHD equations (constant density)
 - ✓ Flux driven, self-consistently evolving pressure profile

• Vorticity (U) Neoclassical poloidal flow damping accounting for self-consistent flow $\frac{\partial U}{\partial t} = -\vec{V}_E \cdot \nabla U - B^2 \nabla_{\parallel} \frac{J_{\parallel}}{B} + \vec{b} \times \vec{\kappa} \cdot \nabla P + \mu_{\perp} \nabla_{\perp}^2 U - \mu_{neo} (U_{0,0} - U_P),$ $U = \nabla_{\perp}^2 \Phi, \quad J_{\parallel} = S \nabla_{\parallel} \Phi, \quad S = \mu_0 \overline{L} V_A / \eta, : \text{Lundquist number (=10^5)}$ $U_P = -\delta(1 - k_{neo}) \nabla_{\perp}^2 P_{0,0}, \quad k_{neo} (v_{i,*}), \mu_{neo} (v_{i,*}): \text{Neoclassical flow/friction coefficients}$ Since $v_{i,*} \sim nT_i^{-2} \sim P^{-2}, \quad k_{neo} (v_{i,*}) \rightarrow k_{neo} (P), \quad \mu_{neo} (v_{i,*}) \rightarrow \mu_{neo} (P)$ • Pressure (P) A det source Sink \rightarrow models SOL loss

$$\frac{\partial P}{\partial t} = -\vec{V}_E \cdot \nabla P + \chi_{\parallel} \partial_{\parallel 0}^2 P + \chi_{neo} \nabla_{\perp}^2 P + S_0(r) - S_1 P_{0,0}$$

- Overall results are independent of the particular source and sink profiles
- For transport coefficients, we use $\chi_{||}{=}0.1,~\chi_{neo}{=}\mu_{\perp}{=}3.0{\times}10^{-6}$

Edge transport barrier (ETB) forms when P_{in} > P_{th}

ETB forms at x~0.95 for P_{in} > P_{th} [Park, H-mode Workshop, 2013]

- Steep pressure pedestal
- Deep Er well
- Discontinuity in slope of Q versus - ∇P graph
 - \rightarrow A feature of first-order phase transition
- Similar simulation result of ETB formation has been reported [Chone, PoP, 2014]

Transition

point

Power ramp up simulation shows the turbulence collapse at $t=t_R$ via an intermediate phase

- Limit-cycle oscillation (LCO) appears prior to the transition
- Turbulence is continuously growing and peaks just before the transition
- ExB flow shear changes abruptly near the transition (yellow shaded area)

$R_T > 1$ for the trigger of the transition at $t=t_R$: fluctuation energy \rightarrow flow (m=n=0) energy

• Turbulence collapse condition ($\partial \tilde{V}_{\perp}^2 / \partial t \leq 0$) $\rightarrow \mathbb{R}_T \geq 1$

 R_T > 1 means the conversion of fluctuation energy into flow energy faster than turbulence energy increase

Simulation shows a similar sequence of the transition to that observed on C-Mod (Cziegler, 2014)

- $R_T > 1$ at $t=t_R \rightarrow$ an increase of pressure gradient.
 - ✓ $R_T > 1$ at t=t_R triggers the transition
 - ✓ Turbulence collapse \rightarrow an increase of ∇P

Microscopic time sequence of the transition: ∇P , ExB flow shear (ω_{ExB}), and linear growth rate (γ_{lin})

- R_T > 1 causes the surge of the turbulence-driven flow shear at t=t_R
- Increase of pressure gradient precedes mean flow shear development
- Positive feedback between $\bigtriangledown P$ and ω_{ExB} begins at t=t_P
- Mean shear criterion ($\omega_{ExB} > \gamma_{Iin}$) is satisfied later, at t=t_C \rightarrow H-mode sustained afterward

Preliminary electromagnetic three-field results

- Simulation of ETB formation using threefield model
 - ✓ Two-field model + Ohm's law for perturbed vector potential (ψ)

$$\frac{\partial \psi}{\partial t} = -\nabla_{\parallel} \Phi + \frac{1}{S} \nabla_{\perp}^{2} \psi,$$

- ✓ Profiles of μ_{neo} and k_{neo} are fixed in time in this simulation
- ✓ ETB occurs for P_{in} = 2.0 as seen in right figures
- ✓ Suggests that the transition physics as found in electrostatic case may also apply for the electromagnetic case (Work is in progress)

Conclusions and discussions

- First 3D turbulence simulation to explicitly show
 - ✓ ETB formation for $P_{in} > P_{th}$
 - ✓ The criteria $R_T > 1$ is the trigger of the L→H transition
 - \longrightarrow Microphysics (R_T) may govern L \rightarrow H transition process
 - ✓ Detailed time sequence of the L-H transition
 - $R_T > 1 \rightarrow$ the surge of the turbulence-driven flow shear
 - An increase of pressure gradient → mean flow shear development via positive feedback
 - $\omega_{ExB} > \gamma_{Iin} \rightarrow$ steady H-mode sustained
- Future works
 - ✓ Microscopic parameter trends in R_T and their relation to L→H transition power threshold scaling
 - $\checkmark\,$ Formation of sudden deep (in time) R_T just prior to the transition
 - ✓ $H \rightarrow L$ back transition and hysteresis
 - ✓ Electromagnetic case

