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Comparison of EDGE2D-EIRENE predictions to measured profiles!Motivation!
•  Predictions of scrape-off layer conditions, and particle and heat loads to divertor plates in ITER 

and DEMO rely on validated simulations ⇒ edge fluid codes are presently the state-of-the-art tools!
•  EDGE2D-EIRENE simulations for JET ITER-like (ILW) wall plasmas without extrinsic impurity 

seeding show shortfall in predicted vs. measured radiation ⇒ observed in low confinement 
mode (L-mode) [1] and high confinement mode (H-mode) plasmas [2] !

⇒  What are the primary radiators in JET-ILW plasmas, and which radiators cause the shortfall?!
•  This poster: assessment of radiation shortfall in L-mode plasmas as described in [1] utilising the 

full suite of JET spectroscopic and imaging suite of diagnostics and EDGE2D-EIRENE [3]!
–  Deuterium fuelling/upstream density scan ⇒ LFS divertor plasma in low-recycling, high-

recycling, partially detached and fully detached conditions; Te at HFS plate < 10 eV for all nup!

–  As pure as possible deuterium plasmas: Zeff decreased from 1.4 at low density to 1.1 at the 
density limit; intrinsic impurities beryllium and carbon: core cBe4+ ≈ 1% and cBe4+ ≈ 0.1% [4]!

–  Absence of ELMs ease data analysis and EDGE2D-EIRENE simulations!
•  Complementary studies for JET-ILW L-mode plasmas with EDGE2D-EIRENE [5] and SOLPS [6]!
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Comprehensive plasma and spectroscopic analyses in a divertor plasma 
configuration with LFS strike point on horizontal plate!

•  Vertical and horizontal (not shown) bolometer array for total radiation!
•  Poloidally scanning VUV/visible spectrometer [7]: Ly-α, D-α, low charge state Be and C!
•  Mirror-link, high-resolution visible (LFS) divertor spectrometer [8]: low-n and high-n Balmer 

lines, low charge state Be and C!
•  Photo-multiplier and low-resolution spectrometer, HFS and LFS [9]: low-n Balmer lines, low 

charge state Be and C!
•  Tangentially viewing cameras [10] and poloidal image reconstructions for divertor emission [11]: 

low-n Balmer lines, low charge state Be and C!

EDGE2D-EIRENE simulations!
• EDGE2D [12] = 2-D (poloidal plane) multi-fluid edge code for pedestal and SOL regions!

–  Parallel-B transport modelled by Bragiinski equations, including D, Be, C, and W !
–  Purely diffusive radial transport (D⊥,eff); coefficients adjusted to reproduce measured profiles of 

ne and Te at LFS midplane; currently, cross-field drifts for pure-D plasmas only!
–  Power flow from core into (density) pedestal from experiments: Pcore→ped = Pin – Prad,ρ<0.9  !
–  Upstream profiles shifted radially inward: force electron pressure balance between LFS 

midplane and LFS target for lowest nup case [13] ⇒ apply same shift to all nup cases!
• EIRENE [14] = 3-D neutral code, deuterium atoms and molecules, impurity atoms; iteratively 

coupled to EDGE2D [3] ⇒ here, use most complete EIRENE package [15]!
• Actual Be/W wall configurations; here, no attempt to model material evolution of divertor walls!
• Carbon injected as diffusive source from PFR, assumed recycling species to further diffuse carbon 

distribution ⇒ actual source not known, but present ⇒ use carbon also a diagnostic for Te!

• Code output: Prad,SOL+ped, jsat,div, Te,div, synthetic diagnostics for bolometers and spectrometers!

Global assessment of radiating species and processes [1, 16]!

Impact of no / cross-field drifts! Impact of Be / C / Be coated divertor!

Conclusions from comparison experiment vs. EDGE2D-EIRENE predictions!
•  In attached divertor conditions (LFS plate), EDGE2D-EIRENE reproduced measured jsat (not 

shown), Te and D-α emission within 20% (when forcing electron pressure balance along SOL!) !
•  Inclusion of cross-field drifts reduces Te at HFS plate and raises D-α across HFS divertor leg ⇒ 

HFS divertor conditions still predicted hotter and less dense (more weakly detached) than inferred 
experimentally!

•  In detached conditions, predicted Te < 1 eV at the plates, yet predicted total radiation and D-α 
emission factors of 3-5 lower than measurements ⇒ divertor plasma recombining, but not 
sufficiently cold to produce radiation (radiation rates highly non-linear below 1 eV)   !

•  Be sputtered at main chamber walls and transported into divertor too low to reproduce measured 
BeII emission ⇒ part of HFS divertor covered with Be, consistent with post-mortem analysis [17] !

•  Artificially increasing BeII emission by assuming fully Be coated divertor (and reduced sputtering 
yields) increases total radiation by 150% at low nup and 30% at high nup over pure-D case ⇒ over-
predicts measured BeII emission!

•  Introducing C as radiating species, at a rate to match measured CII emission across LFS divertor 
leg, may contribute about 50% at low nup and 10% at high nup over pure-D case !
⇒ Radiation shortfall likely not be produced by Be and C line emission ⇒ more likely deuterium 

radiation and divertor plasma temperature and density, and their exact distributions!
⇒ Further radiative loss / temperature reductions may be via molecular deuterium: vibrational-    

rotational activation, molecular ions!

Low-recycling! Partially detached! Low-recycling! Partially detached!
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Line radiation from D! Ly-α ~85-90%, Ly-β ~10% and other lines ~3%!
D line radiation due to direct recombination! < 10-5 of total D line radiation!
Line radiation from D2! ~10% of total D line radiation!
Line radiation from D2+! ~3% of total D line radiation!
D CX recombination ! Negligible!
Radiative recombination to D followed by 
cascading + Bremsstrahlung!

< 10-2 of total D radiation at low nup, rising to ~30% at 
high nup!

Be impurity radiation! ~50% of total D radiation at low nup, decreasing to <10% 
at high nup!

C impurity radiation! ~50% of total D radiation at low nup, decreasing to <10% 
at high nup!

W line radiation! ~10% of total D radiation at low nup, zero at high nup!

⇒  In attached conditions, Be and C emission line contribute 50% to total radiation; in 
detached conditions total radiation is dominated by deuterium Ly-α line emission  
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