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Motivation
»Rotation change by ECH well studied before
on KSTAR, DIII-D, JT-60U,LHD, AUG, ...
»Counter torque due to ECH effects > Rotation change

»O0ur working hypothesis > counter torque by change in turbulence

Highlight of this talk- new findings from 2013 KSTAR
campaign
— Focus/Results: Macro-Micro connection

mm—

® Experimental observations:

Macro ECH resonance layer scan, modulation experiments
__® 1D transport analysis: y;, x, and I, _q
. ® ECEI fluctuation data analysis
Micro —

® Gyro-Kinetic stability study



Outline

I. ECH Experiments : resonance layer scan, modulation
experiments



Comparisons of V¢ changes by on/off ECH for H- & L-mode

Main parameters:
B;=2 T(H-mode) 3T(L-mode)
I1,~0.6 MA, n:2~4el9 m-3
co-Pyg~1.3 MW
Pecy~0.35 MW@110GHz,
0.7 MW@170GHz

H-mode

» On-axis ECH make larger AV¢

» Clear pivot point inside
pedestal

L-mode

> Off-axis ECH make larger AV¢

> No pivot point in rotation
profile
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Rotation scenario for ECH+NBI plasmas on KSTAR:

Interplay of different torques

H-mode

« External torque by NBI

— co-current direction
« Pedestal intrinsic torque

— co-current direction
 Coreintrinsic torque (due to ECH)

— counter-current direction

L-mode

« External torque by NBI
— co-current direction
 Coreintrinsic torque (due to ECH)

— counter-current direction

Intrinsic torque by ECH

Intrinsic torque
tied to pedestal

External torque by NBI

Radius

H-mode pedestal

External torque by NBI
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Modulation Experiments with both on/off ECH in L-mode

Heating Power

Te(keV) Ti(keV) Vy(km/s)

O T T e O L
I T a1

== On-axis ECH

== Off-axis ECH

« Pnbi=1.3MW (1-5s) and 0.7MW (5-8s)
« AVtor increase with Pech/Pnbi
« Line-integrated density (nel) increase during ECH (both on-axis and off-axis)
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Vs, Ti and Te profiles changes by on/off ECH

—s=— on-axis ECH
—4— off-axis ECH
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Jo
Larger AT, for on-axis ECH
Location of maximum AT, > ECH resonance layer
Similar AT; for both on- and off-axis ECH - degradation of confinement
Larger AV, for off-axis ECH - intrinsic torque change



Outline

II. 1D transport analyses of modulation experiments
- heat (x;) and momentum(y,) and non diffusive
momentum flux (I1,,5,,_giff)

- strong correlation between 1I,,,_4;sr With VT,



1-D transport analysis

=» Goal: Calculation of non-diffusive momentum flux I,,,,,_qisf

4 )

a7’
n; -=—F- q+ 0 Heat balance equation
0ot _

m; — —V-II + F | Momentum balance equation

é .
q=—"NiXi E; I = —m;xXy ard) + Hnon—diff

- n;, T;,V, are measured.

* NBI heat source @, and NBI torque F are calculated by NUBEAM
* x: Is evaluated from heat balance equation
° X¢ Is given under the assumptionthat x; = x4 .. Pr=y4/xi = 1

(P. Diamond et al, NF2012)
= I1,on_qify Can be calculated



x; shows different responses to VT; and VT, changes
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» ECHon = y;increases as |VT,| increases, while |VT;| decreases

» ECH off = y; decreases as |VT,| decreases, while |VT;| increases
- VT, is the main driving force of transport = TEM excitation

-> Clear hysteresis loop for y; vs VT, (time lag between two quantities)
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IT,.5n_airr Proportional to changes of VT, during ECH modulation

» ECHon = |l on—gisf| iINCreases as |VT,| increases, while |VT;| decreases
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» ECH off 2 |,,n—giff| decreases as |VT,| decreases, while |VT;| increases
> VT, is the main driver of non-diffusive IT,,,,_qirs (K. Ida NF2010, J. Rice

PRL2011)
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Study for the correlation between IT,,,,_g4isr and V

-
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Outline

I1I. ECEI fluctuation data analysis
> |T./T.| increases with ECH injection



T, Fluctuations from ECEI

Time-Frequency spectraof T,
at core for on-axis ECH in L-mode

ECEI on KSTAR (H. Park, EX/8-1) ity ek :
Spatial resolution : 1cm(Z), 2~3cm(R) '.:‘;‘"' i ;q,ﬁ’.-. | i«?,.f, ! i
Time resolution: 2us T S

3 i 3.5 a4 4.5 5
Time (s)

Detailed Power spectra in next page

|’T‘e/Te|2 bursts over wide frequency range in
every ECH modulation cycle
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High frequency fluctuations of T, increase with ECH

Power density
—3.95~4.0s w/o ECH

10t * —4.0s~4.1s with ECH .
T, /T,| TEM range '
1o° :

\ *W‘MWMM%WWWNW
1102030 50 100 150 250

Frequency:kHz Shot:9407

Power spectra of T, at core region

 Intensity of high frequency range (TEM frequency range) increases with ECH

— evidence of TEM excitation
* There is no peak in higher frequency due to limited ECEI spatial resolution.

» The peak at 8 kHz (coherent mode, MHD?) becomes narrower (intensity
decrease) with ECH. .



Power density
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« Peaks of Pz 500kH2/P6-30kHz
closely correspond to the peaks
in counter-current rotation for

every ECH cycle

*  A(P30-200kH2/Ps-30kHz ) € |VV¢|

— Explicitly shows the connection
of micro |T,/T,| to macro rotation
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Waveforms of power ratio between high frequency

T, and low frequency T,, and V4 at three positions
in modulated ECH plasma
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Outline

IV. Gyro-kinetic linear stability analysis
- indicate ITGHTEM



Gyrokinetic Linear Stability Study
= |TG < TEM matches macro-trend of Vo

- Mode Frequency Linear Growth Rate » ITG—>TEM transition occurs at

p=0.4~0.6 for on —axis ECH

p=0.6 ~0.8 for off —axis ECH

» Off-axis ECH excites stronger
TEM at outer region even though

AT, is smaller due to increased

trapped particle population

» Matches with macro-trend of AV

on-axis ECH
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Conclusion

In L-mode, off-axis ECH induces stronger counter-current torque than on-axis ECH
1D transport analysis shows

— Clear correlation between y; and VT, - TEM driven transport

— Strong correlation between I1,,4,,_qirf and VT, = VT, drives Il on_qgiffs

— No clear correlation between 1,4, _qirr and Vg
Power spectrum of T, fluctuation indicates the excitation of TEM and AV, closely
follows the changes of high frequency T, fluctuations.

Linear gyrokinetic analysis indicates that ITG—->TEM occurs and stronger TEM

excitation for off-axis ECH due to increased trapped particle population —> match

of micro-instability and macro-V,, trend
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Outline

V. Conclusion and future plan



Future plan

« Coordinated experimental studies of coupling momentum

and particle transport

« Combined ECEI and BES fluctuation studies, coordinated

with macro-scopics

— Fluctuation intensity profile?
— Fluctuation propagation direction in plasma frame? Flip of propagation

direction?
* Nonlinear gyro-fluid simulations of dynamically competing

domains with ITG and TEM turbulence populations
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Thank you
for your attention!



Density profiles with and without ECH (off-axis ECH in L-mode)
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6~30kHz
30~200kHz
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500 — 1€ fluctuation amplitudes in
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Waveforms of Te fluctuation amplitudes in low
and high frequency ranges
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