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Motivation 
Rotation change by ECH well studied before 

                              on KSTAR, DIII-D, JT-60U,LHD, AUG, …    

Counter torque due to ECH effects  Rotation change 

Our working hypothesis  counter torque  by change in turbulence  
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Highlight of this talk- new findings from 2013 KSTAR 
campaign 

 Focus/Results: Macro-Micro connection 
 
 
 Macro 

 Experimental observations:  

        ECH resonance layer scan, modulation experiments 

 1D transport analysis:  i ,   and non-diff 

 
 ECEI fluctuation data analysis  

 Gyro-Kinetic stability study 
Micro 



Outline 

I. ECH Experiments : resonance layer scan, modulation 
experiments  

II.   1D transport  analyses of modulation experiments           
 heat (𝝌𝒊) and momentum(𝝌𝝓) and non-diffusive 
momentum flux(𝚷𝒏𝒐𝒏−𝒅𝒊𝒇𝒇)  
  strong correlation between  𝚷𝒏𝒐𝒏 with 𝜵𝑻𝒆 

 
III. ECEI fluctuation data analysis  
                 
  
IV. Gyro-kinetic linear stability analysis  
 indicate  ITGTEM 
 
V. Conclusion and future plan 
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|𝑻 𝒆/𝑻𝒆|  increases with ECH injection 
 



Comparisons of V changes by on/off ECH for H- & L-mode 

H-mode 
 On-axis ECH make larger V 
 Clear pivot point inside 

pedestal 

L-mode 
 Off-axis ECH make larger V 
 No pivot point in rotation 

profile  
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   Main parameters: 
BT=2 T(H-mode) 3T(L-mode)    
Ip~0.6 MA, ne:2~4e19 m-3 

co-PNBI~1.3 MW     
PECH~0.35 MW@110GHz,   
         0.7 MW@170GHz 
    



• External torque by NBI  

          co-current direction 

• Pedestal intrinsic torque 

          co-current direction 

• Core intrinsic torque (due to ECH) 

          counter-current direction  

Rotation scenario for ECH+NBI plasmas on KSTAR:  
Interplay of different torques 

H-mode 
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Radius 

Intrinsic torque  

tied to pedestal 

External torque by NBI 

Intrinsic torque by ECH 

H-mode pedestal 

• External torque by NBI  

          co-current direction 

• Core intrinsic torque (due to ECH) 

          counter-current direction  

Radius 

External torque by NBI 

Intrinsic torque by ECH 

L-mode 



• Pnbi=1.3MW (1-5s) and 0.7MW (5-8s)     Correlation btw ECH & V 

• Vtor increase with Pech/Pnbi 

• Line-integrated density (nel) increase during ECH (both on-axis and off-axis) 

Modulation Experiments with both on/off ECH in L-mode 
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On-axis ECH 
 
Off-axis ECH 



V, Ti and Te profiles changes by on/off ECH 

• Larger 𝜟𝑻𝒆 for on-axis ECH 

• Location of maximum 𝚫𝐓𝐞   ECH resonance layer 

• Similar 𝜟𝑻𝒊 for both on- and off-axis ECH  degradation of confinement 

• Larger 𝜟𝑽𝝓 for off-axis ECH  intrinsic torque change 
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Outline 

I. ECH Experiments : resonance layer scan, modulation 
experiments 

  
II.   1D transport  analyses of modulation experiments           
 heat (𝝌𝒊) and momentum(𝝌𝝓) and non diffusive 
momentum flux (𝚷𝒏𝒐𝒏−𝒅𝒊𝒇𝒇)  
  strong correlation between  𝚷𝒏𝒐𝒏−𝒅𝒊𝒇𝒇 with 𝜵𝑻𝒆 

 
III. ECEI fluctuation data analysis  
                 
  
IV. Gyro-kinetic linear stability analysis  
 indicate  ITGTEM 
 
V. Conclusion and future plan 
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|𝑻 𝒆/𝑻𝒆|  increases with ECH injection 



1-D transport analysis 

 Goal: Calculation of non-diffusive momentum flux 𝜫𝒏𝒐𝒏−𝒅𝒊𝒇𝒇 
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𝒏𝒊
𝝏𝑻𝒊
𝝏𝒕

= −𝜵 ∙ 𝒒 + 𝑸 Heat balance equation 

𝒎𝒊

𝝏𝒏𝒊𝑽𝝓

𝝏𝒕
= −𝜵 ∙ 𝜫 + 𝑭 Momentum balance equation 

 𝒒 = −𝒏𝒊𝝌𝒊
𝝏𝑻𝒊

𝝏𝒓
,  𝜫 = −𝒎𝒊𝝌𝝓

𝝏𝒏𝒊𝑽𝝓

𝝏𝒓
+𝜫𝒏𝒐𝒏−𝒅𝒊𝒇𝒇 

• 𝒏𝒊 , 𝑻𝒊 , 𝑽𝝓  are measured.  

• NBI heat source 𝑸, and NBI torque 𝑭 are calculated by NUBEAM 

• 𝝌𝒊  is evaluated from heat balance equation 

• 𝝌𝝓 is given under the assumption that  𝝌𝒊 = 𝝌𝝓  i.e. 𝑷𝒓 = 𝝌𝝓 𝝌𝒊 =  𝟏 

(P. Diamond et al, NF2012) 
 𝜫𝒏𝒐𝒏−𝒅𝒊𝒇𝒇 can be calculated 



𝝌𝒊 shows different responses to 𝛁𝐓𝐢 and 𝛁𝐓𝒆 changes 

 ECH on   𝝌𝒊 increases as |𝜵𝑻𝒆| increases, while |𝜵𝑻𝒊| decreases 

 ECH off   𝝌𝒊 decreases as |𝜵𝑻𝒆| decreases, while |𝜵𝑻𝒊| increases  

 𝜵𝑻𝒆 is the main driving force of transport  TEM excitation 

 Clear hysteresis loop for 𝝌𝒊 vs 𝜵𝑻𝒆  (time lag between two quantities)  
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=0.2 =0.5 

 v
s 

 
 

 v
s 

 
 

ECH on 
 
ECH off 

𝛻𝑇𝑖  (𝑒𝑉/𝑚) 𝛻𝑇𝑖  (𝑒𝑉/𝑚) 

𝛻𝑇𝑒  (𝑒𝑉/𝑚) 𝛻𝑇𝑒  (𝑒𝑉/𝑚) 
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=0.2 =0.5 
 v

s 
 

 v
s 

 

𝜫𝒏𝒐𝒏−𝒅𝒊𝒇𝒇 proportional to changes of 𝛁𝐓𝒆 during ECH modulation 

𝛻𝑇𝑖  (𝑒𝑉/𝑚) 𝛻𝑇𝑖  (𝑒𝑉/𝑚) 

𝛻𝑇𝑒  (𝑒𝑉/𝑚) 𝛻𝑇𝑒  (𝑒𝑉/𝑚) 

ECH on 
 
ECH off 

 ECH on   |𝚷𝐧𝐨𝐧−𝐝𝐢𝐟𝐟| increases as |𝜵𝑻𝒆| increases, while |𝜵𝑻𝒊| decreases 

 ECH off   |𝚷𝐧𝐨𝐧−𝐝𝐢𝐟𝐟| decreases as |𝜵𝑻𝒆| decreases, while |𝜵𝑻𝒊| increases  
 𝜵𝑻𝒆 is the main driver of non-diffusive 𝜫𝒏𝒐𝒏−𝒅𝒊𝒇𝒇  (K. Ida NF2010, J. Rice 

PRL2011) 
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=0.2 =0.5 
 v

s 
 

 

ECH off 

ECH on 

Study for the correlation between 𝜫𝒏𝒐𝒏−𝒅𝒊𝒇𝒇 and 𝑽𝝓 

 No clear proportionality between  𝜫𝐧𝐨𝐧−𝐝𝐢𝐟𝐟 and  𝑽𝝓   



Outline 
 
I. ECH Experiments : resonance layer scan, modulation 

experiments  
II.   1D transport  analyses of modulation experiments           
 heat (𝝌𝒊) and momentum(𝝌𝝓) and non-diffusive 
momentum flux(𝚷𝒏𝒐𝒏−𝒅𝒊𝒇𝒇)  
  strong correlation between  𝚷𝒏𝒐𝒏−𝒅𝒊𝒇𝒇 with 𝜵𝑻𝒆 

 
III. ECEI fluctuation data analysis  
                 
  
IV. Gyro-kinetic linear stability analysis  
 indicate  ITGTEM 
 
V. Conclusion and future plan 
 

|𝑻 𝒆/𝑻𝒆|  increases with ECH injection 
 



𝑻𝒆 Fluctuations from ECEI 
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Time-Frequency spectra of 𝑻𝒆  
at core for on-axis ECH in L-mode 

ECEI on KSTAR (H. Park, EX/8-1 ) 

Spatial resolution : 1cm(Z), 2~3cm(R)  

Time resolution:  2s 

Detailed Power spectra in next page 

𝑻 𝒆/𝑻𝒆
𝟐
 bursts over wide frequency range in 

every ECH modulation cycle 

   



Power spectra of  𝑻𝒆 at core region 

TEM range 

• Intensity of high frequency range (TEM frequency range) increases with ECH   

  evidence of TEM excitation 

• There is no peak in higher frequency due to limited ECEI spatial resolution. 

• The peak at 8 kHz (coherent mode, MHD?) becomes narrower (intensity 

decrease) with ECH. 
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High frequency fluctuations of 𝑻𝒆 increase with ECH 

𝑻 𝒆/𝑻𝒆
𝟐
 



Waveforms of power ratio between high frequency 

𝑻 𝒆 and low frequency 𝑻 𝒆, and 𝑽𝝓 at three positions 

in modulated ECH plasma  

• Peaks of P30-200kHz/P6-30kHz  

closely correspond to the peaks 

in counter-current rotation for 

every ECH cycle  

•  (P30-200kHz/P6-30kHz )  |𝛁𝐕𝝓| 

  Explicitly shows the connection 

of  micro |𝑻 𝒆/𝑻𝒆|  to macro rotation 

V 
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𝑻 𝒆/𝑻𝒆
𝟐
 



Outline 
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IV. Gyro-kinetic linear stability analysis  
 indicate  ITGTEM 
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|𝑻 𝒆/𝑻𝒆|  increases with ECH injection 
 



Mode Frequency Linear Growth Rate 

NBI 

On-

axis 

ECH 
 

Off-

axis 

ECH 
 

Gyrokinetic Linear Stability Study  

     ITG ↔ TEM matches macro-trend of 𝑽𝝓 
 ITGTEM  transition occurs at 

=0.4~0.6  for on –axis ECH  

      =0.6 ~0.8  for off –axis ECH 

 Off-axis ECH excites stronger 

TEM at outer region even though 

𝜟𝑻𝒆 is smaller due to increased 

trapped particle population 

 Matches with macro-trend of 𝜟𝑽𝝓 



• In L-mode, off-axis ECH induces stronger counter-current torque than on-axis ECH 

• 1D transport analysis shows 

–  Clear correlation between 𝜒𝑖 and 𝛻𝑇𝑒  TEM driven transport 

–  Strong correlation between Π𝑛𝑜𝑛−𝑑𝑖𝑓𝑓 and 𝛻𝑇𝑒  𝛻𝑇𝑒 drives Π𝑛𝑜𝑛−𝑑𝑖𝑓𝑓 

–  No clear correlation between Π𝑛𝑜𝑛−𝑑𝑖𝑓𝑓 and 𝑉𝜙  

• Power spectrum of 𝑇𝑒 fluctuation indicates the excitation of TEM and Δ𝑉𝜙 closely 

follows the changes of high frequency 𝑇𝑒 fluctuations. 

• Linear gyrokinetic analysis indicates that ITGTEM occurs and stronger TEM 

excitation for off-axis ECH due to increased trapped particle population         match 

of micro-instability and macro-𝑉𝜙 trend 

Conclusion 
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|𝑻 𝒆/𝑻𝒆|  increases with ECH injection 
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Future plan  

• Coordinated experimental studies of coupling momentum 

and particle transport 

• Combined ECEI and BES fluctuation studies, coordinated 

with macro-scopics 

– Fluctuation intensity profile? 

– Fluctuation propagation direction in plasma frame? Flip of propagation 

direction? 

• Nonlinear gyro-fluid simulations of dynamically competing 

domains with ITG and TEM turbulence populations 
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Density profiles with and without ECH  (off-axis ECH in L-mode) 



Waveforms of Te fluctuation amplitudes in low 
and high frequency ranges 
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