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As the pedestal collisionality decreases,
Two factors determine if a single mode
amplitude can grow to a large magnitude to
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As the edge density (collisionality) increases, the growth rate of the P-B

mode increases for high n but decreases for low n (1<n<5)
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O The ballooning term dominates the high n modes. Because ion diamagnetic
drift is inversely proportional to the density for fixed pressure, when density
Increases, the ion diamagnetic stabilization decreases and growth rate

increases.

O The kink term dominates the low n modes. Therefore, as the density
increases, the edge current decreases and growth rate decreases.
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The growth time of linear drive is determined by nonlinear

process via phase evolution for large ELM crash LL
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Phase coherence time (PCT, t.): the length of time duration of the relative phase for linear growth
- Linear theory/simulations: unchanged ¢ = 7, —> o

->The growth time is determined by nonlinear Phase Scattering Xi, Xu, Diamond, Phys. Plasmas 21, 056110 (2014)



BOUT++ simulations show consistent collisionality scaling of

ELM energy losses with ITPA multi-tokamak database LL
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Two factors determine if a single
mode amplitude can grow to a
large magnitude to trigger an ELM
» Linear growth rate
» Nonlinear growth time

y < —linear
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As the edge collisionality decreases, both linear and nonlinear physics set ELM energy loss
O Linearly, the dominant P-B mode shifts to lower n and the spectrum width of the linear

growth rate decreases
0 Nonlinearly,

Narrow mode spectrum = Weak nonlinear Phase Scattering =2Long PCT ->Large ELMs



BOUT++ simulations show the small change in ELM affected volume with

Increasing plasma density, consistent with experiments LL

Profile of surface-averaged pressure perturbation
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0 The reduction of ELM energy loss with increasing density (or collisionality) is accompanied by a
decrease of the perturbation to the pressure caused by the ELM in an approximately constant volume

0 As the edge collisionality decreases, the dominant P-B mode shifts to lower n and the spectrum width
decreases
Narrow mode spectrum = Weak nonlinear Phase Scattering =>Long PCT ->Large perturbation



Linear criterion for the onset of ELMs ¥y > 0 Is

replaced by the new nonlinear criterion y > y, |
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Xi, Xu, Diamond, PRL 112, 085001 (2014)

Y is the critical growth rate and is determined by nonlinear interaction in the background turbulence




As the pedestal collisionality decreases,
Two factors determine if a single mode
amplitude can grow to a large magnitude to
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HL-2M is a new tokamak under construction to study the high performance
plasma, techniques and engineering issues relevant to fusion reactor.

Main plasma parameters

Plasma current |, =2.5(3) MA
Major radius R=178m
Minor radius a=0.65m
Aspect ratio R/a=2.8
Elongation K =1.8-2
Triangularity 0>0.5
Toroidal field B;=22@R3)T
Flux swing A®D= 14Vs

Heating power 25 MW
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The components of HL-2M
are being fabricated.
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Vacuum vessel
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COOHL-2M has a demountable TF coils with PF coils
be placed inside the TF coils to enhance the
flexibility and controllability of experiments to

achieve high quality plasma;

Heat flux at target can be roughly compared

HL-2M: P/R = 14AMW/m
ITER: P/R=14~16MW/m

OPF coils close to core plasma, it will reduce the PF

coils current to generate advanced divertor
configuration with a second X point to handle large
amount of heating power (25MW);
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Configuration loses the features
‘ of a snowflake divertor, becomes
25 just two separate X-points;

OO0 A prototypical X-divertor or conceptually similar cusp divertor
arranged coils near the strike point;

0 we suggest to call a configuration with a long divertor leg and
three outgoing branches of the separatrix a “tripod
configuration”.
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O Same main parameters, R, a, |, Kgs, Qs

[0 Same pressure and current profiles.

Fast convective heat transport around
weak B, can increase power sharing
among the divertor legs and broaden
the heat flux profile at target,

especially during an ELM bursts
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OLimit the power flows into inner divertor region;
COOHandle most of heating power by outer divertor with longer connection length
and large plasma-wetted area.
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O It is designed on HL-2M to achieve flexible divertor operation:

standard, snowflake and tripod,;

O Tripod divertor configuration is a new divertor configuration, in which
the distance between two X points on divertor leg can be adjusted

according to the plasma and PF coils parameters of HL-2M,;

O HL-2M will have the ability to operate with high performance plasma
and advanced divertor with 25MW heating power, and will be a
platform to test the engineering and physics issues relevant to fusion

reactor.
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Thank you!
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Simulation model and equilibrium in BOUT++ L
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We create a set of equilibria with the self-consistent variation of density and

temperature profiles, while keeping the plasma cross-sectional shape,

total stored energy, total plasma current and pressure profile fixed. LL
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