Combined Talk

Part one:

TH/3-1Ra

Toward An Emerging Understanding of ELM Crashes and Energy Loss Scaling

X.Q.Xu¹, P.W.Xi^{1,2}, P.H.Diamond^{3,4}, J.F.Ma^{1,5}, C.H.Ma^{1,2}, A.Dimits¹, I.Joseph¹, M.V.Umansky¹, B. Gui^{1,6}, G.Q.Li^{1,6}, T.Y.Xia^{1,6}, B.Dudson⁷, P.B.Snyder⁸

Part two:

TH/3-1Rb

Advanced Divertor Analysis of HL-2M

G.Y. Zheng¹, X.Q. Xu², D.D. Ryutov², T.Y. Xia³ and Y.D. Pan¹, Z.H. Wang¹

TH/3-1Ra

Toward An Emerging Understanding of ELM Crashes and Energy Loss Scaling

X.Q.Xu¹, P.W.Xi^{1,2}, P.H.Diamond^{3,4}, J.F.Ma^{1,5}, C.H.Ma^{1,2}, A.Dimits¹, I.Joseph¹, M.V.Umansky¹, B. Gui^{1,6}, G.Q.Li^{1,6}, T.Y.Xia^{1,6}, B.Dudson⁷, P.B.Snyder⁸

¹Lawrence Livermore National Laboratory, Livermore, California 94550, USA
²School of Physics, Peking University, Beijing, China
³WCI Center for Fusion Theory, National Fusion Research Institute, Daejon, R. Korea
⁴Center for Astrophysics and Space Sciences and Dept. of Phys., UC San Diego, La Jolla, CA 92093, USA
⁵Institute for Fusion Studies, University of Texas, Austin, TX, 78712, USA
⁶Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
⁷University of York, Heslington, York YO10 5DD, United Kingdom
⁸General Atomics, San Diego, California 92186, USA

Presented at the 25th IAEA Fusion Energy Conference (FEC 2014), St Petersburg, Russian Federation 13 - 18 October 2014

This work was performed under the auspices of the U.S. DoE by LLNL under Contract DE-AC52-07NA27344, LLNL LDRD project 12-ERD-022 and is supported by the China NSF under Contract No.10721505, the National Magnetic Confinement Fusion Science Program of China under Contracts No. 2011GB107001. LLNL-PRES-661094.

Principal Results

3

As the pedestal collisionality decreases, Two factors determine if a single mode amplitude can grow to a large magnitude to trigger an ELM

- Linear growth rate
- Nonlinear growth time

Linear results

The width of the growth rate spectrum $\gamma(n)$ becomes narrower and the peak growth shifts to lower n

Nonlinear results

The growth time of linear drive is determined by nonlinear process via phase evolution for large ELM crash

Narrow mode spectrum \rightarrow Weak nonlinear Phase Scattering \rightarrow Long PCT \rightarrow Large ELMs

BOUT++ simulations show consistent collisionality scaling of ELM energy losses with ITPA multi-tokamak database

As the edge density (collisionality) increases, the growth rate of the P-B mode increases for high n but decreases for low n (1<n<5)

- The ballooning term dominates the high n modes. Because ion diamagnetic drift is inversely proportional to the density for fixed pressure, when density increases, the ion diamagnetic stabilization decreases and growth rate increases.
- □ The kink term dominates the low n modes. Therefore, as the density increases, the edge current decreases and growth rate decreases.

Phase coherence time (PCT, τ_c): the length of time duration of the relative phase for linear growth →Linear theory/simulations: unchanged $\delta \varphi \Rightarrow \tau_c \to \infty$ →The growth time is determined by nonlinear Phase Scattering Xi, Xu, Diamond, Phys. Plasmas 21, 056110 (2014)

BOUT++ simulations show consistent collisionality scaling of **ELM energy losses with ITPA multi-tokamak database**

A

Spectrum width A

10.0

As the edge collisionality decreases, both linear and nonlinear physics set ELM energy loss

- Linearly, the dominant P-B mode shifts to lower n and the spectrum width of the linear growth rate decreases
- □ Nonlinearly,

Narrow mode spectrum \rightarrow Weak nonlinear Phase Scattering \rightarrow Long PCT \rightarrow Large ELMs

BOUT++ simulations show the small change in ELM affected volume with increasing plasma density, consistent with experiments

- The reduction of ELM energy loss with increasing density (or collisionality) is accompanied by a decrease of the perturbation to the pressure caused by the ELM in an approximately constant volume
- As the edge collisionality decreases, the dominant P-B mode shifts to lower n and the spectrum width decreases

Narrow mode spectrum \rightarrow Weak nonlinear Phase Scattering \rightarrow Long PCT \rightarrow Large perturbation

Linear criterion for the onset of ELMs $\gamma > 0$ is replaced by the new nonlinear criterion $\gamma > \gamma_c$

Xi, Xu, Diamond, PRL 112, 085001 (2014)

 γ_c is the critical growth rate and is determined by nonlinear interaction in the background turbulence

Summary (1)

As the pedestal collisionality decreases, Two factors determine if a single mode amplitude can grow to a large magnitude to trigger an ELM

- Linear growth rate
- > Nonlinear growth time

Part one: Linear results

The width of the growth rate spectrum $\gamma(n)$ becomes narrower and the peak growth shifts to lower n

Part two: Nonlinear results

The growth time of linear drive is determined by nonlinear process via phase evolution for large ELM crash

Narrow mode spectrum \rightarrow Weak nonlinear Phase Scattering \rightarrow Long PCT \rightarrow Large ELMs

BOUT++ simulations show consistent collisionality scaling of ELM energy losses with ITPA multi-tokamak database

Advanced Divertor Analysis of HL-2M

TH3-1Rb

G.Y. Zheng¹, X.Q. Xu², D.D. Ryutov², T.Y. Xia³ and Y.D. Pan¹, Z.H. Wang¹

G.Y. Zheng

¹Southwestern Institute of Physics, Chengdu, People's Republic of China ²Lawrence Livermore National Laboratory, Livermore, CA 94550, USA ³Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China

> Presented at the 25th IAEA Fusion Energy Conference (FEC 2014), St Petersburg, Russian Federation 13 - 18 October 2014

SWIP Southwestern Institute of Physics

HL-2M

HL-2M is a new tokamak under construction to study the high performance plasma, techniques and engineering issues relevant to fusion reactor.

Main plasma parameters

Plasma current	I _p = 2.5 (3) MA
Major radius	R = 1.78 m
Minor radius	a = 0.65 m
Aspect ratio	R/a = 2.8
Elongation	K = 1.8-2
Triangularity	δ > 0.5
Toroidal field	B _T = 2.2 (3) Τ
Flux swing	ΔΦ= 14Vs
Heating power	25 MW

Main structure of HL-2M

SWIP Southwestern Institute of Physics

HL-2M will be commissioned in 2015

The components of HL-2M

are being fabricated.

Magnetic field coils

<image>

High quality plasma and advanced divertor

□HL-2M has a demountable TF coils with PF coils be placed inside the TF coils to enhance the flexibility and controllability of experiments to achieve high quality plasma;

Heat flux at target can be roughly compared

HL-2M: P/R = 14MW/m ITER: $P/R = 14 \sim 16$ MW/m

■PF coils close to core plasma, it will reduce the PF coils current to generate advanced divertor configuration with a second X point to handle large amount of heating power (25MW);

Advanced divertor configurations of HL-2M

- □ A prototypical X-divertor or conceptually similar cusp divertor arranged coils near the strike point;
- we suggest to call a configuration with a long divertor leg and three outgoing branches of the separatrix a "tripod configuration".

Divertor target design of HL-2M

- Asymmetric divertor target
- Standard and advanced divertor
- Double Null divertor
- Target with large plasma-wetted area

Large Weak B_p area

SF-minus reduces P-B growth rate

D.D. Ryutov, et al., Contrib. Plasma Phys., 52, 539, 2012; PPCF, 54, 124050, 2012.

D Same main parameters, *R*, *a*, I_p , k_{95} , q_{95} .

□ Same pressure and current profiles.

Fast convective heat transport around weak B_p can increase power sharing among the divertor legs and broaden the heat flux profile at target, especially during an ELM bursts

Heat flux at targets of DN tripod divertor

Limit the power flows into inner divertor region;

Handle most of heating power by outer divertor with longer connection length and large plasma-wetted area.

Summary (2)

- It is designed on HL-2M to achieve flexible divertor operation: standard, snowflake and tripod;
- Tripod divertor configuration is a new divertor configuration, in which the distance between two X points on divertor leg can be adjusted according to the plasma and PF coils parameters of HL-2M;
- HL-2M will have the ability to operate with high performance plasma and advanced divertor with 25MW heating power, and will be a platform to test the engineering and physics issues relevant to fusion reactor.

Thank you!

SWIP Southwestern Institute of Physics

Summary

BOUT++ simulations show consistent collisionality scaling of ELM energy losses with ITPA multitokamak database

- High performance plasma
- Advanced divertor
- 25MW heating power
- Issues relevant to fusion reactor

Simulation model and equilibrium in BOUT++

- 3-field model for nonlinear ELM simulations
 - Including essential physics for the onset of ELMs

Peeling-ballooning instability Resistivity Hyper-resistivity Ion diamagnetic effect

$$\frac{d \, \varpi}{dt} = \mathbf{B} \nabla_{\parallel} J_{\parallel} + 2 \mathbf{b}_{0} \times \mathbf{\kappa} \cdot \nabla \widetilde{P} + \mu_{i,\parallel} \partial_{\parallel}^{2} \boldsymbol{\varpi}$$
$$\frac{d \widetilde{P}}{dt} + \mathbf{V}_{E} \cdot \nabla P_{0} = 0$$
$$\frac{\partial A_{\parallel}}{\partial t} + \partial_{\parallel} \phi_{T} = \frac{\eta}{\mu_{0}} \nabla_{\perp}^{2} A_{\parallel} - \frac{\eta_{H}}{\mu_{0}} \nabla_{\perp}^{4} A_{\parallel}$$
$$\boldsymbol{\varpi} = \frac{m_{i} n_{0}}{B} \left(\nabla_{\perp}^{2} \phi + \frac{1}{e n_{0}} \nabla_{\perp}^{2} \widetilde{P}_{i} \right)$$

$$d / dt = \partial / \partial t + \mathbf{V}_{ET} \cdot \nabla, \mathbf{V}_{ET} = \frac{1}{B} \mathbf{b}_0 \times \nabla \phi_T, \phi_T = \phi_0 + \phi, \nabla_{\parallel} f = B \partial_{\parallel} \frac{f}{B}, \partial_{\parallel} = \partial_{\parallel}^0 + \delta \mathbf{b} \cdot \nabla, \delta \mathbf{b} = \frac{1}{B} \nabla A_{\parallel} \times \mathbf{b}_0, J_{\parallel} = J_{\parallel 0} + \widetilde{J}_{\parallel}, \widetilde{J}_{\parallel} = -\nabla_{\perp}^2 A_{\parallel} / \mu_0$$

We create a set of equilibria with the self-consistent variation of density and temperature profiles, while keeping the plasma cross-sectional shape, total stored energy, total plasma current and pressure profile fixed.

