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ELM Control in ITER 

• Natural ELMs in ITER 

– Exp. collisionality scaling: ∆W=20 MJ 

– Mitigation to 0.7MJ required 

• ITER ELM control methods 

– Magnetic perturbation coils (RMP) 

– Pellet injection 

• Alternatives? 

– Vertical kicks (Y. Gribov, PPC/P3-21) 

– QH-mode 

• Physics basis for ITER 

– Prediction natural ELM size requires simulations of multiple ELM cycles 

– Physics of RMP ELM mitigation 

– Minimum pellet size for ELM trigger, pellet triggered ELM size 

– Conditions for QH-mode in ITER 

ITER ELM coils 
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Non-Linear MHD code JOREK 

• 3D toroidal geometry (reduced) MHD code 

– full domain, open-closed field lines, resistive wall, vacuum, PF coils 

– developed within (mostly) European collaboration 

• including flows: ion and electron diamagnetic flows, source 

of toroidal rotation, neoclassical poloidal viscosity 

– divertor sheath boundary conditions 

 
JET #77329 

V//=Cs 
Vneoclassic Vpoloidal Eradial 

Stationary equilibrium flows 
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ELM Simulation: Mode Rotation 

• Observations in MAST, AUG, KSTAR: ELM precursor rotating poloidally 

mainly in the electron diamagnetic (=ExB) direction 

• ELM simulations with consistent poloidal, diamagnetic and parallel flows 

show linear ballooning mode (~precursor) moving in electron 

diamagnetic direction (~0.5e*, in the lab frame, Vpol~20-40 km/s)  

– mode rotation in ion diamagnetic direction in plasma frame (~0.5i*)  

• In the non-linear phase: 

– Reduction of flows 

– Filaments are sheared off in the 

opposite (ion) direction due to non-

linear driven n=0 poloidal flow 
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ELM Simulations with Diamagnetic Flows 

• Experimentally, ELM energy losses are predominantly (2:1) towards the 

inner divertor 

• Previously, ELM MHD simulations (not including diamagnetic flow) yielded 

larger heat load asymmetry towards the outer divertor 

• Including diamagnetic flows leads to a symmetric distribution (1:1) of 

ELM divertor heat loads 

*=0 (no diamagnetic flows) including *,Vneo, Vtor 
Divertor Power 
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MHD Simulation of Multiple ELM Cycles 

• Without diamagnetic flow:  

– residual MHD after ELM crash prevents pedestal rebuild => single ELM 

– ELM size depends on initial conditions (no reliable ELM size predictions) 

• Including diamagnetic flows: regular ELMy regime 

– Stabilisation of residual MHD by diamagnetic flows allows pedestal rebuild 

– Small high frequency ELMs (~500-2000 Hz) 
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RMP ELM Mitigation 

• JET #77329, Error Field Correction Coils (EFCC), n=2 

• Large discrete ELMs are replaced by small bursty events- 

continuous MHD 

– Due to non-linear coupling of toroidal harmonics by low-n RMP 

– Threshold in RMP coil current  

• Divertor peak heat flux reduced up to factor ~10 [Becoulet, PRL2014] 

RMP on 

magnetic energy perturbation 

RMP off 

density 

perturbation 
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ELM Mitigation by RMPs 

• Ballooning mode structure of natural ELM changes to 

modes with tearing parity  
– Island chains form at q = m/n = 9/4, 14/6 and 15/6 

– Modes non-linearly driven through coupling with n=2 RMP fields 

no RMP, n=0-8 n=2 RMP n=2 RMP, n=0-8 
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RMP Mitigated ELM Divertor Foot Prints 

• The divertor footprints of the simulated mitigated ELMs mainly exhibit 

structures created by RMPs (here n=2), modulated by other toroidal 

harmonics of mitigated ELMs (n=4,6,8) 

– Mitigated ELM perturbation not locked to RMP 

 

[Cahyna, TH/P6-1]  

RMP off: rotating footprints with 

main mode structure n=8 ELM 

connection length 

RMP n=2 only: static footprints 

 

RMP(n=2)+ELMs: n=2,4,6,8 

 

connection length 
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Pellet Triggered ELMs in JET 
• Previous: pellet triggered ELM simulations in DIII-D  

– ELMs (ballooning modes) are triggered by local 3D pressure perturbation 

created by the pellet 

• Density perturbation moving with sound speed, faster parallel conduction 

• Reasonable agreement on minimum pellet size required for ELM trigger 

• Here: complete cycle pellet triggered ELM in JET (#82885) 

– Pellets simulated as adiabatic moving density source using NGS ablation model 

• Pellet size 3.2x1020, speed 78 m/s , LFS-mid plane, Ip = 2.0 MA, B0 = 2.1T, W = 2.9 MJ 

density 

 at the wall 
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Pedestal Dependence Pellet Triggered ELMs Size 

• “Predicted” ELM size 108kJ (∆W/W=4%) compares to 100-250kJ in JET #82885  

• Experimentally, pellet triggered ELM size increases with time since previous ELM 

• Non-linear MHD simulations show strong dependence of pellet triggered ELM energy 

loss on pedestal pressure gradient 

– No sharp transition from stable to unstable 

– This dependence (and imposed pellet frequency) determines the maximum 

sustainable pedestal gradient and possible performance penalty due to pellet pacing. 

 JET #82885 

ballooning 

 unstable 
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MHD Simulations of DIII-D QH-mode Plasmas 
• Quiescent H-mode regime characterised by good confinement without ELMs 

– discovered in DIII-D, reproduced in AUG, JET, JT60-U 

• Edge Harmonic Oscillation (EHO) induces density losses and allows a 

steady state H-mode 

– EHO assumed to be a saturated kink-peeling MHD mode 

• DIII-D QH-modes approaching ITER-relevant conditions 

Burrell, NF2013 DIII-D  

Burrell, TTF2011 DIII-D  

Can QH-mode be an option for ITER? 

• Towards validation of non-linear MHD 

simulations on DIII-D QH-mode plasmas 

• Extrapolation to ITER  
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MHD Simulation of DIII-D QH-mode #145117 

• DIII-D #145117 pedestal close (below) to kink-peeling ideal MHD  

stability limit 

• JOREK simulations (ideal wall, no rotation) show saturated kink-peeling 

mode with dominant n=1 structure (3D stationary state) 

– n=5 mode most unstable mode, n=1 strong growth due to non-linear coupling 

– Bursting behavior found in some cases at high resistivity 

 

 
magnetic energy perturbation magnetic energy perturbation 
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EHO: Saturated Low-n Kink-peeling Mode 

• Toroidal localisation, n=1-5 toroidal harmonics in phase 

– Localised density perturbation at the separatrix 

– Consistent with EHO observations 

• Ergodic region (~5cm width in mid-plane) 

– Contributes to mode saturation? 

perturbed 

flux 
Poincare 

DIII-D #145117 

density at separatrix 



Guido Huijsmans et al., 25th IAEA FEC 2014, St-Petersburg 

© 2014, ITER Organization  

Page 16 IDM UID: XXXXXX 

density (ψ=0.95) evolution 

QH-mode Density Perturbation 

• ExB flows from external kink/peeling mode leading to a significant 

outflow of density 

– Reduction of pedestal density by ~25% 

– Provides density/energy loss channel necessary for stationary ELM 

free H-mode 

n=1 

n=2 

n=3 
n=4 

frequency spectrum density  density profiles 
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MHD Stability of Narrow SOL in ITER 
• Scaling laws for the SOL width (in low-recycling regime) predict narrow SOL 

widths in ITER attached divertor conditions 

– Is there an MHD limit to the narrow SOL widths in ITER? 

• MHD stability analysis shows ITER plasmas with a narrow 1.2mm SOL 

are MHD stable 

– Pressure gradient is below infinite-n ballooning limit at separatrix 

– Integrated pedestal/SOL MHD stability using JOREK code finds no local SOL MHD 

limit (n<50) 

 

 

perturbed flux 

(n=40) 

Ballooning mode (n=40) 
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Conclusions 

• Nonlinear MHD simulations of ELMs 

– Regular ELMy regime (diamagnetic effects) 

– ELM precursor rotates in electron diamagnetic direction, filaments mostly in 

opposite direction  

• RMP ELM mitigation 

– non-linearly driven by RMP modes with “tearing” like structure, providing 

reconnections with open field lines before large ELMs have time to develop 

• Pellet triggered ELMs 

– reasonable agreement on ELM amplitude 

– pellet triggered ELM amplitude depends on phase in ELM cycle 

• QH-mode 

– Simulation of DIII-D QH-mode plasmas show low-n saturated kink-peeling 

mode, with EHO-like features (density loss, toroidal localisation) 

• SOL Stability 

– No MHD stability limit found for SOL widths down to 1.2mm in ITER 

– MHD not likely to limit  ITER SOL width 


