

Non-linear MHD simulations for ITER

*G. Huijsmans*¹, F. Liu¹, A. Loarte¹, S. Futatani³, F. Koechl⁴, M. Hoelzl⁵, A. Garofalo⁶, W. Solomon⁶, P.B. Snyder⁶, E. Nardon², F. Orain², M. Bécoulet² and JET contributors

Non-linear MHD modelling of ELMs and their interaction with RMPs in rotating plasmas

M. Bécoulet², F. Orain², J. Morales², X. Garbet², G. Dif-Pradalier²,
C. Passeron², G. Latu², E. Nardon², A. Fil², V. Grandgirard²,
G. Huijsmans¹, S. Pamela⁷, A. Kirk⁷, P. Cahyna⁸, M. Hoelzl⁵,
E. Franck⁵, E. Sonnendrücker⁵, B. Nkonga⁹

¹ITER Organization,²CEA/IRFM, ³Ecole Centrale de Lyon, ⁴TU Wien, ⁵IPP/Garching, ⁶General Atomics, ⁷CCFE/Culham, ⁸IPP-ASCR/Prague, ⁹Universite de Nice

Disclaimer: The views and opinions expressed herein do not necessarily reflect those of the ITER Organization

ELM Control in ITER

- Natural ELMs in ITER
 - -Exp. collisionality scaling: Δ W=20 MJ
 - -Mitigation to 0.7MJ required
- ITER ELM control methods
 - -Magnetic perturbation coils (RMP)
 - -Pellet injection
- Alternatives?
 - -Vertical kicks (Y. Gribov, PPC/P3-21)
 - -QH-mode
- Physics basis for ITER
 - -Prediction natural ELM size requires simulations of multiple ELM cycles
 - Physics of RMP ELM mitigation
 - -Minimum pellet size for ELM trigger, pellet triggered ELM size
 - -Conditions for QH-mode in ITER

ITER ELM coils

Outline

- Introduction
 - -ITER ELM control
- Non-linear MHD code JOREK –MHD model, flows
- ELMs, multiple cycles – Diamagnetic flow
- ELM control:
 - -RMPs, ELM mitigation
 - -Pellet pacing in JET
 - -QH-mode in DIII-D

TH/6-1Ra Huijsmans et al.

Becoulet et al.

TH/6-1Rb

- Narrow Scrape-off Layer MHD Stability in ITER
- Conclusions

Non-Linear MHD code JOREK

- 3D toroidal geometry (reduced) MHD code
 - -full domain, open-closed field lines, resistive wall, vacuum, PF coils
 - -developed within (mostly) European collaboration
- including flows: ion and electron diamagnetic flows, source of toroidal rotation, neoclassical poloidal viscosity
 - -divertor sheath boundary conditions

Cea ELM Simulation: Mode Rotation

- Observations in MAST, AUG, KSTAR: ELM precursor rotating poloidally mainly in the electron diamagnetic (=ExB) direction
- ELM simulations with consistent poloidal, diamagnetic and parallel flows show linear ballooning mode (~precursor) moving in electron diamagnetic direction (~ $0.5\omega_e^*$, in the lab frame, Vpol~20-40 km/s)
 - -mode rotation in ion diamagnetic direction in plasma frame (~ $0.5\omega_i^*$)

- In the **non-linear phase**:
- -Reduction of flows
- Filaments are sheared off in the opposite (ion) direction due to nonlinear driven n=0 poloidal flow

Cea ELM Simulations with Diamagnetic Flows IRfm

- Experimentally, ELM energy losses are predominantly (2:1) towards the inner divertor
- Previously, ELM MHD simulations (not including diamagnetic flow) yielded larger heat load asymmetry towards the outer divertor
- Including diamagnetic flows leads to a symmetric distribution (1:1) of ELM divertor heat loads

Cea MHD Simulation of Multiple ELM Cycles

- Without diamagnetic flow:
 - –residual MHD after ELM crash prevents pedestal rebuild => single ELM
 - -ELM size depends on initial conditions (no reliable ELM size predictions)
- Including diamagnetic flows: regular ELMy regime
 - -Stabilisation of residual MHD by diamagnetic flows allows pedestal rebuild
 - -Small high frequency ELMs (~500-2000 Hz)

- JET #77329, Error Field Correction Coils (EFCC), n=2
- Large discrete ELMs are replaced by small bursty eventscontinuous MHD
 - Due to non-linear coupling of toroidal harmonics by low-n RMP
 - Threshold in RMP coil current
- Divertor peak heat flux reduced up to factor ~10

[Becoulet, PRL2014]

china eu india japan korea russia usa © 2014, ITER Organization

Cea ELM Mitigation by RMPs

- Ballooning mode structure of natural ELM changes to modes with tearing parity
 - Island chains form at q = m/n = 9/4, 14/6 and 15/6
 - Modes non-linearly driven through coupling with n=2 RMP fields

[Cahyna, TH/P6-1]

 The divertor footprints of the simulated mitigated ELMs mainly exhibit structures created by RMPs (here n=2), modulated by other toroidal harmonics of mitigated ELMs (n=4,6,8)

Cea RMP Mitigated ELM Divertor Foot Prints

- Mitigated ELM perturbation not locked to RMP

RMP off: rotating footprints with main mode structure n=8 ELM

RMP(n=2)+ELMs: n=2,4,6,8

Pellet Triggered ELMs in JET

- Previous: pellet triggered ELM simulations in DIII-D
 - ELMs (ballooning modes) are triggered by local 3D pressure perturbation created by the pellet
 - Density perturbation moving with sound speed, faster parallel conduction
 - Reasonable agreement on minimum pellet size required for ELM trigger
- Here: complete cycle pellet triggered ELM in JET (#82885)
 - Pellets simulated as adiabatic moving density source using NGS ablation model
 - Pellet size 3.2x10²⁰, speed 78 m/s , LFS-mid plane, $I_p = 2.0$ MA, $B_0 = 2.1$ T, W = 2.9 MJ

Pedestal Dependence Pellet Triggered ELMs Size

- "Predicted" ELM size 108kJ (Δ W/W=4%) compares to 100-250kJ in JET #82885
- Experimentally, pellet triggered ELM size increases with time since previous ELM
- Non-linear MHD simulations show strong dependence of pellet triggered ELM energy loss on pedestal pressure gradient
 - No sharp transition from stable to unstable
 - This dependence (and imposed pellet frequency) determines the maximum sustainable pedestal gradient and possible performance penalty due to pellet pacing.

MHD Simulations of DIII-D QH-mode Plasmas

- Quiescent H-mode regime characterised by good confinement without ELMs
 - discovered in DIII-D, reproduced in AUG, JET, JT60-U
- Edge Harmonic Oscillation (EHO) induces density losses and allows a steady state H-mode
 - EHO assumed to be a saturated kink-peeling MHD mode
- DIII-D QH-modes approaching ITER-relevant conditions

Can QH-mode be an option for ITER?

- Towards validation of non-linear MHD simulations on DIII-D QH-mode plasmas
- Extrapolation to ITER

Guido Huijsmans et al., 25th IAEA FEC 2014, St-Petersburg

MHD Simulation of DIII-D QH-mode #145117

- DIII-D #145117 pedestal close (below) to kink-peeling ideal MHD stability limit
- JOREK simulations (ideal wall, no rotation) show saturated kink-peeling mode with dominant n=1 structure (3D stationary state)
 - n=5 mode most unstable mode, n=1 strong growth due to non-linear coupling
 - Bursting behavior found in some cases at high resistivity

Page 14

EHO: Saturated Low-n Kink-peeling Mode

Poincare

- Toroidal localisation, n=1-5 toroidal harmonics in phase
 - Localised density perturbation at the separatrix
 - Consistent with EHO observations
- Ergodic region (~5cm width in mid-plane)
 - Contributes to mode saturation?

0.08

0.05

0.12

0.16

perturbed

flux

0.2

QH-mode Density Perturbation

- ExB flows from external kink/peeling mode leading to a significant outflow of density
 - Reduction of pedestal density by ~25%
 - -Provides density/energy loss channel necessary for stationary ELM free H-mode

MHD Stability of Narrow SOL in ITER

- Scaling laws for the SOL width (in low-recycling regime) predict narrow SOL widths in ITER attached divertor conditions
 - Is there an MHD limit to the narrow SOL widths in ITER?
- MHD stability analysis shows ITER plasmas with a narrow 1.2mm SOL are MHD stable
 - Pressure gradient is below infinite-n ballooning limit at separatrix
 - Integrated pedestal/SOL MHD stability using JOREK code finds no local SOL MHD limit (n<50)

Conclusions

- Nonlinear MHD simulations of ELMs
 - Regular ELMy regime (diamagnetic effects)
 - ELM precursor rotates in electron diamagnetic direction, filaments mostly in opposite direction
- RMP ELM mitigation
 - non-linearly driven by RMP modes with "tearing" like structure, providing reconnections with open field lines before large ELMs have time to develop
- Pellet triggered ELMs
 - reasonable agreement on ELM amplitude
 - pellet triggered ELM amplitude depends on phase in ELM cycle
- QH-mode
 - Simulation of DIII-D QH-mode plasmas show low-n saturated kink-peeling mode, with EHO-like features (density loss, toroidal localisation)
- SOL Stability
 - No MHD stability limit found for SOL widths down to 1.2mm in ITER
 - MHD not likely to limit ITER SOL width

