FIP/3-4Rb

17(Friday) am

17(Friday) pm

DEMO Concept Development and Assessment of Relevant Technologies

<u>Y. Sakamoto</u>, K. Tobita, Y. Someya, H. Utoh, N. Asakura, K. Hoshino, M. Nakamura, S. Tokunaga and the DEMO Design Team

Japan Atomic Energy Agency

FIP/3-4Ra

Physics and Engineering Studies

of the Advanced Divertor for a Fusion Reactor

<u>N. Asakura</u>, K. Hoshino, H. Utoh, ¹⁾K. Shinya, Y. Someya, K. Shimizu, S. Tokunaga, K. Tobita, ²⁾N. Ohno, ³⁾M. Kobayashi, ³⁾H. Tanaka

Japan Atomic Energy Agency, ¹Toshiba Nuclear Engineering Services Co. ²Nagoya University, ³National Institute for Fusion Science

25th Fusion Energy Conference (FEC) 2014, St Petersburg 13-18 October 2014

Introduction: Demo concept design and Advanced divertor study

DEMO is a bridge from ITER to a commercial reactor, and will demonstrate **Electric power generation**, **Tritium self-sufficiency**, **Steady-state operation**. Breeding blanket and large power exhaust are principal design issues.

Design parameters for DEMO have been studied with considering, Medium size ($R_p > 8m$) for full inductive I_p ramp up by CS coil ($\Delta \Psi_{CS} \propto R_{CS}^2$) Fusion power ($P_{fus} < 2$ GW) compatible with power handling in divertor.

To minimize the development subjects, it is designed by utilizing existing technologies from Tokamaks (ITER, JT-60SA,) and Nuclear reactor technologies (PWR).

Advanced divertor study will provide new options of magnetic configuration. Advanced divertor is produced by driving reverse current in one of the divertor coils \Rightarrow Coil currents and number are increased. Super-X divertor image for SlimCS

Physics and Engineering issues were investigated in a super-X divertor with a short divertor leg, comparable to the conventional divertor size.

Divertor performance was compared in SlimCS (R = 5.5m, $P_{fus} = 3GW$, $I_p=16.7MA$) in order to compare the previous results in the conv. divertor.

Divertor heat load and compatible heat removal technology are important key for reactor design

Basic concept of divertor

FIP/P8-11 K. Hoshino et al.

 Water-cooling and W mono-block target design: Lower peak heat load (< 5MW/m²) is required for W-target&F82H(RAFM)-cooling tube design.

Assessment of reduction in heat load by SONIC

- Simulation study for R_p =5.5 m SlimCS indicated: q_{target} < 10 MW/m² is obtained with large radiation fraction (f_{rad} =P_{rad}/P_{out} > 80%, P_{out} = 300-400 MW) for P_{fus}=1.5-2 GW,
- suggesting $q_{target} < 10 \text{ MW/m}^2$ in larger R_p with P_{fus} =1.5 GW and f_{rad} = 70% ($q_{target} \propto P_{out}/R_p$).

Assessment of heat removal capability

- P_{fus} = 1.5 GW operation reduces dpa/year < 1.5 near the strike-point: W-target&Cu-alloy-cooling tube will be applied at inner and outer targets.
- ⇒ Replacement of the divertor target is expected in $\begin{bmatrix} n \\ -1 \end{bmatrix}$ 1-2 years.

Peak heat load at outer target, incl. plasma, surf. recomb., radiation and neutral loading

(AEA) Impact of blanket thickness for overall TBR~1.05 on plasma elongation of ~1.65 by vertical stability

DEMO scoping study: a concept design with R_p~8.5m & P_{fus}~1.5GW based on technology assessments

Based on the assessment, possible design/plasma parameter sets are evaluated by systems code (TPC).

Key concepts

S

- R_p > 8 m for full inductive I_p ramp up.
 ✓ Operation flexibility from pulse to steady-state
- P_{fus} ~ 1.5 GW and P_{gross} ~ 0.5 GW based on the assessments of divertor heat removal and overall TBR > 1.05
- $\kappa_{95} = 1.65$ for vertical stability with conducting shell.
 - B_T^{max} > 12 T based on Nb₃Sn or Nb₃Al, S_m = 800 MPa
 - Segmented maintenance scheme:
 - Segment RM image for blanket and divertor
 - Analysis of Accident Scenarios: SEE/P5-10 M. Nakamura, et al.

	Parameters	DEMO (Steady state)	Ref. ITER
Size & Configuration	R _p (m)	8.5	6.35
	a _p (m)	2.42	1.85
	A	3.5	3.43
	К ₉₅	1.65	1.85
	q ₉₅	4.1	5.3
	I _p (MA)	12.3	9.0
	B _T (T)	5.94	5.18
	B _T ^{max} (T)	12.1	11.8
Absolute Performance	P _{fus} (MW)	1462	356
	P _{gross} (MWe)	507	-
	Q	17.5	6
	P _{ADD} (MW)	83.7	59
	N _e (10 ¹⁹ m ⁻³)	6.6	6.7
	NWL (MW/m²)	1.0	0.35
Normalized Performance	HH _{98y2}	1.31	1.57
	β_N	3.4	2.95
	f _{BS}	0.61	0.48
	n _e /n _{GW}	1.2	0.82
	f _{He}	0.07	0.04

1. Concept design study of advanced divertors for DEMO

- Study showed large current (>100 MAT) is required for the divertor coils outside TFC \Rightarrow Divertor coils should be installed <u>inside TFC</u>: "interlink-winding"
- Snowflake: Flux expansion (f^{exp}) increases near SF-null and Connection length (L_{//}) is 1.5-1.7 times, while f^{exp}_{div} and target wet area are smaller than conv. divertor, ⇒ appropriate for compact divertor concept.
- Short Super-X: f^{exp} and L_{//} increase along divertor leg
 ⇒ radiation and detachment control in divertor.
 Interlink coil current and number are less than SFD.

2. Conceptual design of Short super-X divertor

Engineering design and issues for Interlink divertor coil

Nb₃Al Superconductor is preferable for Interlink divertor coil than Nb₃Sn:

(1) React and Wind

(2) Stress analysis (< 250MPa): lower load ratio (<50%) of allowable stress (500MPa)

Design issues and Development:

- SC filament is reduced from 60 to $1\mu m$ (equivalent to Nb₃Sn) to decrease AC losses.
- EM-force on IL-coil (-23 MAT) becomes 500-600 MN under average Br (0.67T)
 ⇒ additional load on TFCs ⇒ support of IL-coil is necessary.

3. Divertor plasma simulation of short SXD by SONIC code

SONIC simulation for short SXD :

Input parameters are the same as conventional divertor: P_{out} = 500 MW, n_i = 7x10¹⁹ m⁻³ at core-edge boundary, $\chi_i = \chi_e = 1 \text{ m}^2 \text{s}^{-1}$, $D = 0.3 \text{ m}^2 \text{s}^{-1}$:same as ITER simulation

Radiation power loss is increased by Ar seeding at the same total radiation fraction $(P_{rad}/P_{out}) = 0.92$ as SlimCS divertor analysis (IAEA FEC2012).

Radiation power is increased in the divertor, compared to reference divertor

 \Rightarrow Impurity retention is improved.

Detachment is produced near SX-null in short SXD

Radiation is enhanced near the SX-null (along the separatrix). At the same time, high temperature plasma (>100 eV) is maintained near the SX-null (in Poster). \Rightarrow Radiative area in the poloidal direction is narrow due to longer fieldline length.

Distance from separatrix (m)

0.2

Summary: Demo concept design and Advanced divertor study

Advanced divertor study will provide new options of the divertor configuration. Physics and Engineering issues of *Short-SXD* has been studied in SlimCS:

- Interlink divertor coils are required: Nb₃Al SC is preferable for React&Wind
- \Rightarrow SC filament size should be reduced, and IL-coil support for EM-force is required.
- f_{exp} and $L_{//}$ to target are increased along the divertor leg: max. 19 and 2 times.
- Power handling has been investigated by SONIC for P_{FP} = 3GW reactor(P_{out}=500MW)
- ⇒ Radiative area is narrow poloidally, and efficient to produce full detachment. Surface recombination is dominant near the separatrix due to large ion flux.
 Conv. divertor is the first choice: Advantages and issues in adv. divertors are studied as alternative.