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Introduction: Demo concept design and Advanced divertor study 

 DEMO is a bridge from ITER to a commercial reactor, and will demonstrate 
   Electric power generation,   Tritium self-sufficiency,   Steady-state operation. 
   Breeding blanket and large power exhaust are principal design issues. 

Design parameters for DEMO have been studied with considering, 
  Medium size (Rp >  8m) for full inductive Ip ramp up by CS coil (DYCS∝RCS

2) 
  Fusion power (Pfus < 2 GW) compatible with power handling in divertor. 

To minimize the development subjects, it is designed by utilizing existing technologies 
from Tokamaks (ITER, JT-60SA, ….) and Nuclear reactor technologies (PWR). 

Physics and Engineering issues were investigated 
in a super-X divertor with a short divertor leg, 
comparable to the conventional divertor size. 
 
 Divertor performance was compared in SlimCS 
 (R = 5.5m, Pfus = 3GW, Ip=16.7MA) in order to 
compare the previous results in the conv. divertor. 

Super-X divertor image for SlimCS 

Advanced divertor study will provide new options of magnetic configuration.   
 Advanced divertor is produced by driving reverse current in one of the divertor coils 
⇒ Coil currents and number are increased. 



Basic concept of divertor 

 Water-cooling and W mono-block target design: 
    Lower peak heat load (< 5MW/m2) is required for 

W-target&F82H(RAFM)-cooling tube design.  

Assessment of reduction in heat load by SONIC 

 Simulation study for Rp =5.5 m SlimCS indicated:  

qtarget < 10 MW/m2 is obtained with large radiation 
fraction (frad =Prad/Pout > 80%, Pout = 300-400 MW)  
for Pfus=1.5-2 GW,  

 suggesting qtarget < 10 MW/m2 in larger Rp with 
Pfus=1.5 GW and frad = 70% (qtarget∝Pout/Rp). 

Assessment of heat removal capability 

 Pfus = 1.5 GW operation reduces dpa/year < 1.5 
near the strike-point: W-target&Cu-alloy-cooling 
tube will be applied at inner and outer targets. 

FIP/P8-11 K. Hoshino et al. 

⇒ Replacement of the divertor target is expected in 
1-2 years. 

Rp=8.2m 

Peak heat load at outer target, incl. plasma, 
surf. recomb., radiation and neutral loading 
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Assessment of blanket thickness 

 Water cooled solid breeder 
based on ITER-TBM 
PWR condition (~300℃, 15.5 MPa) 
Be12Ti and Li2TiO3 pebbles 

 Overall TBR >1.05 is evaluated 
for blanket thickness of 0.6m 
and Pfus < 2.0 GW. 
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Assessment of vertical stability 

 No use of in-vessel coil in 
DEMO 

 Stabilize plasma by conducting 
shell, typically at rW/ap ~ 1.35 

 Vertical stability analysis 
indicates design elongation of 
k95 ~ 1.65. 

DBLK 
DSOL Dgap 

DBLK  corresponds to 
0.6m for Rp=8.2m  

A=3.2 



Segment RM image for 
blanket and divertor 

Parameters DEMO 
(Steady state) 

Ref. 
ITER 
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Rp (m) 8.5 6.35 

ap (m) 2.42 1.85 

A 3.5 3.43 

k95 1.65 1.85 

q95 4.1 5.3 

Ip (MA) 12.3 9.0 

BT (T) 5.94 5.18 

BT
max (T) 12.1 11.8 
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Pfus (MW) 1462 356 

Pgross (MWe) 507 - 

Q 17.5 6 

PADD (MW) 83.7 59 

ne  (1019m-3) 6.6 6.7 

NWL (MW/m2) 1.0 0.35 
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 HH98y2 1.31 1.57 

bN 3.4 2.95 

fBS 0.61 0.48 

ne/nGW 1.2 0.82 

fHe 0.07 0.04 

Based on the assessment, possible design/plasma 
parameter sets are evaluated by systems code (TPC).  

 BT
max > 12 T based on Nb3Sn 

or Nb3Al, Sm = 800 MPa 

 k95 = 1.65 for vertical stability with conducting shell. 

 Rp > 8 m for full inductive Ip ramp up. 
 Operation flexibility from pulse to steady-state 

Key concepts 

 Pfus ~ 1.5 GW and Pgross~ 0.5 GW based on the assessments 
of divertor heat removal and overall TBR > 1.05 

 Segmented maintenance 
scheme: 
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 Analysis of Accident Scenarios: 
SEE/P5-10 M. Nakamura, et al. 
 



For rmid =1mm 

1. Concept design study of advanced divertors for DEMO  

 • Snowflake: Flux expansion (fexp) increases near SF-null  
    and Connection length (L//)  is 1.5-1.7 times, while fexp

div  
   and target wet area are smaller than conv. divertor,  
   ⇒ appropriate for compact divertor concept. 

 • Short Super-X:  fexp and L// increase along divertor leg 
   ⇒ radiation and detachment control in divertor. 
       Interlink coil current and number are less than SFD. 

Study showed large current (>100 MAT) is required for the divertor coils outside TFC 
 ⇒ Divertor coils should be installed inside TFC: “interlink-winding” 

 N. Asakura, et al., Trans. Fus. Sci. Tech. 63 (2013) 70. 

Snowflake divertor (SFD) Short super-X divertor (SXD) in outer leg 

Ip =16.7MA 
Bt =6.0T  



Interlink coils 

Divertor maintenance& 

Exhaust port 

Blanket 
maintenance 
port 

Interlink divertor coil and the short SXD are 
arranged under Engineering restrictions: 
• Arrangement of PFCs with 2 interlink-coils: 
   Interlink coils outside neutron shield and vessel. 
• Divertor cassette and its replacement:  
   same height as SlimCS divertor  
• Superconductor interlink design:  Nb3Al  
   maximum current 25MAT and 1.6m size 

2. Conceptual design of Short super-X divertor 

2 interlink arrange for SlimCS 
Ip =16.7MA, Bt =6.0T  

n-shield＆Vessel(0.8m) 

Magnetic configuration of short-SXD 
and conventional divertor geometries 

  fSXD = (YSX-null – Yax)/(YDiv-null – Yax ) = 0.99:  
max fexp and L// increases to 19 and 2 times than conv. div. 



Engineering design and issues for Interlink divertor coil 

• SC filament is reduced from 60 to 1mm (equivalent to Nb3Sn) to decrease AC losses.  

Nb3Al Superconductor is preferable for Interlink divertor coil than Nb3Sn:  
(1) React and Wind  
(2) Stress analysis (< 250MPa): lower load ratio (<50%) of allowable stress (500MPa)  

H. Utoh, et al. Fusion Eng. Des. 89 (2014) 2456. 

Insulator 

Supercritical helium flow     

 (f5mm) 

Conduit 

Seper-

conductor 

(4.6kA) 

1st IL coil (#9) 

2nd IL coil(#8) 

Winding image of Nb3Al conductor:   
Superconductor coil is inserted though TF coils, 
and is winded by rotating SC bobbin. 

• EM-force on IL-coil (-23 MAT) becomes 500-600 MN under average Br (0.67T)  
    ⇒ additional load on TFCs ⇒ support of IL-coil is necessary. 

Design issues and Development: 

Interlink superconductor is designed, 
based on ITER poloidal coil conductor: 

• 25 MAT corresponds to coil 
size of 1.6mx1.6m  



Full detachment (Te=Ti~1eV) is 
produced at both targets. 

3. Divertor plasma simulation of short SXD by SONIC code 

SONIC simulation for short SXD : 
Input parameters are the same as conventional divertor:  
  Pout= 500 MW, ni=7x1019 m-3  at core-edge boundary,  
  ci = ce = 1 m2s-1, D = 0.3 m2s-1 :same as ITER simulation 

Radiation power loss is increased by Ar seeding 
at the same total radiation fraction (Prad/Pout) = 0.92 
as SlimCS divertor analysis (IAEA FEC2012). 

SOL calculation width (rmid =2.2 cm) 
core-edge bounary 

Radiation power is increased in the divertor, 
compared to reference divertor  
⇒ Impurity retention is improved. 

Note: 
nZ/ni(SOL) ~ 1.5% 
in short-SXD and LL, 
while ~2% in reference. 

 N. Asakura, et al. Nucl. 
Fusion, 53 (2013) 123013. 



Detachment is produced near SX-null in short SXD  

Radiation is enhanced near the SX-null (along the separatrix). At the same time, 
high temperature plasma (>100 eV) is maintained near the SX-null (in Poster). 
⇒ Radiative area in the poloidal direction is narrow due to longer fieldline length. 

• Maximum total heat load ~10 MWm-2 in the full detached divertor (Te = Ti ~ 1eV) 
Surface recombination is dominant near the separatrix, due to large ion flux. 

Prad 

SX-null 

Short SX divertor Conv. long-leg Conv. reference 

Partial detach full detach 

Short SX divertor Conv. long-leg Conv. Ref. 



Summary: Demo concept design and Advanced divertor study  

 DEMO concept is considered through the assessment of relevant technologies. 
 Rp > 8.0 m for full inductive Ip ramp up by CS coil  
 Operation flexibility from pulse to steady-state 

 Pfus = 1.5 GW and Pgross ~ 0.5 GW are foreseeable from the viewpoints of   
  Divertor heat removal capability and tritium self-sufficiency in blanket. 

By considering above and other assessments, DEMO concept design study shows, 
 frad = 70% will be compatible with Pfus=1.5 GW, Rp > 8.0 m and partial use of Cu- 

alloy as cooling pipe near high qtarget and lower dpa/year region 
 Water cooled solid breeder blanket with its thickness of 0.6 m for TBR > 1.05 
 k95 = 1.65 for vertical stability with conducting shell 
       Segmented maintenance scheme.    Re-use & recycle of components. 
       BT

max > 12 T is achieved, based on both Nb3Sn or Nb3Al, Sm = 800 MPa 

Advanced divertor study will provide new options of the divertor configuration. 
Physics and Engineering issues of Short-SXD has been studied in SlimCS: 
• Interlink divertor coils are required: Nb3Al SC is preferable for React&Wind  
 ⇒ SC filament size should be reduced, and IL-coil support for EM-force is required. 
• fexp and L// to target are increased along the divertor leg: max. 19 and 2 times. 
• Power handling has been investigated by SONIC for PFP= 3GW reactor(Pout=500MW)  
 ⇒ Radiative area is narrow poloidally, and efficient to produce full detachment. 

Surface recombination is dominant near the separatrix due to large ion flux. 
Conv. divertor is the first choice: Advantages and issues in adv. divertors are studied as alternative. 
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