
Kinetic Neoclassical Calculation of E_r across H-mode Pedestal and SOL Reproduces Measurements EX/P2-24

- Kinetic simulation (XGC0) reproduces observations of H-mode pedestal
 - Energy distributions are non-Maxwellian
 - Temperature anisotropy $(T_{\parallel} \neq T_{\theta})$
 - Large T_i in SOL
 - Neoclassical ion transport is non-local
 - Decoupled energy and particle
 transport
 - Instrisic edge torque

• Fluid assumptions break down in edge

- XGC0: E_r adjusted to maintain ambipolar kinetic transport
 - Ion orbit loss = neoclassical pinch
 - Wall sheaths in SOL
- Fluid force-balance E_r for C⁶⁺ and D⁺ differs from kinetic E_r in pedestal
- Simulated and measured E_r using fluid assumptions are in agreement

XGC0: Kinetic E_r for $\Gamma_i = \Gamma_e$ XGC0: C⁶⁺ fluid force balance XGC0: D⁺ fluid force balance

Fluid force balance:

$$E_r = \frac{\nabla P_i}{Zen_i} - v_{\theta i}B_{\phi} + v_{\phi i}B_{\theta}$$

