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• There are technological limits on 
heat flux removal, and the 

problem gets more challenging 

for future devices 

 

• High fidelity control gives 

opportunity to solve some of 

these challenges 

Focus: How to Achieve Acceptable Heat Flux Exhaust 

Compatible with Attractive Core Plasma 
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for future devices 

 

• High fidelity control gives 

opportunity to solve some of 

these challenges 

1. Snowflake Divertor: 
- Reduce peak heat flux 
- Possibly reactor 

application 

2. Partial detachment control 
- Reduce target plasma 

temperature & erosion 
- ITER relevant 

Focus: How to Achieve Acceptable Heat Flux Exhaust 

Compatible with Attractive Core Plasma 

3. Burn control 
- Regulate 

heat source 
- ITER/Reacto

r relevant  
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Heat Flux Reduction via 

1. Snowflake Divertor Control 

2. Detachment Control 

3. Burn Control with 3D Coils 
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Snowflake Divertor (SFD) Has Advantages Compared to 

the Standard X-point Divertor  

• Snowflake divertor(SFD): second-order null (2 X-points)  

• Geometric changes compared to standard divertor can lead to: 

– High poloidal flux expansion, large plasma-wetted area reduce peak qdiv 

– Four strike points  share Pdiv 

2 

S.L. Allen/IAEA FEC/November, 2012 

• Theory1 predicts second order null of SF Divertor ( BP~0) 

– Multiple strike points, increased volume and connection lengths 

– Increased edge shear, influencing pedestal stability 

• Experiments2 have made progress on comparisons 

• DIII-D adds new data: Focus on SF(-) configuration 

DIII-D Experiments focus on SF(-) configuration  

1D. D. Ryutov, PoP 14, 064502 2007, TH/P4-18 
2Vijvers EX/P5-22, 3Soukhanovskii EX/P5-21 

2nd X-Point in 
Private Flux 

2nd X-Point in 
SOL 
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Snowflake Control System 

SFD (-) 

SFD (+) 

SFD 

locator 

Desired 

SFD 

SFD 

controller 

IPF 

- 

+ 

DIII-D 
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Br = -
1

r

¶Y exp

¶dz
= 0 = Bz =

1

r

¶Y exp

¶dx
= 0

{drX1
(cexp ),dzX1

(cexp ),drX2
(cexp ),dzX2

(cexp )}

Y exp = Y(cexp,dr,dz)

SFD 
locator 

Desired 
SFD 

SFD 
controller 

IPF 

- 

+ 

DIII-D 

  

• Locally expand the Grad-Shafranov 

equation in toroidal coordinates: 

 

 

 

• Keep the 3rd order terms 

 
 

• Find coefficients, cexp, from sample 

points 

• Find the null points (X-points) <250us 

 

 

 

 

 

 

 

 

• Real-time calculation with reasonable 
accuracy (<250 us) 
 

  

Snowflake Locator: Finding the Two X-points 

 

SFD (+) 
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SFD 
locator 

Desired 
SFD 

SFD 
controller 

IPF 

- 

+ 

DIII-D 

  

• Snowflake parameters:θ, ρ, rc, zc 

• Calculate A matrix which shows 
how PF coils affect X-points (2 ms) 

 

 

 

 

 
 

• 3 closest PF coils are used for 

controlling the formation 
 

  

 

 

 

 

 

 

Snowflake Control: Controlling the PF Coil Currents 

x 
x 

x 

Location of the X-points and Centroid  

F8B 

F4B 

F5B 

ρ 

θ 
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Snowflake Control: Obtaining Exact Snowflake (ρ Scan) 

Simulation 
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Snowflake Control: Obtaining Exact Snowflake (ρ Scan) 

Simulation 
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• Obtained long stable S-F close to exact S-F  

– No adverse confinement degradation 

– Pedestal profile for S-F has little change compared to regular divertor 

– Observed broadening of heat flux profiles with snowflake 

 

 

 

Snowflake Control: Obtaining Snowflake (Exact, + and -) 

Snowflake Control (Control Starts at 3 s) 

Near Exact  

Snowflake 
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Snowflake Control: Scanning the Angle 

Simulation 
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Snowflake Control: Scanning the Angle 

Simulation 
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Snowflake Control: Angle Control (+80° to -45°) 

Angle requested 

Angle achieved 

-45°  
x 

x 

Time [ms] 

x 
80°  

x 
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Snowflake with 2.5x Reduced Heat Flux Compatible 

with High Performance Plasmas 

• βN = 3.0 and H98(y,2) ≅ 

1.35 conditions preserved 

with SF with no adverse 

effects 

– Peak heat flux outer 

reduced by 2.5x for the 

SF AT 

– SF: qP
⊥,Iin  > qP

⊥,out  

5 
T.W. Petrie/APS-DPP/Nov. 2013 

084-13/TWP/ 

Heat flux behavior in the Snowflake and the standard 
configurations have similarities and differences 

• SF: Expected bifurcation 
at outer target(s) 

 

No gas puffing case standard Snowflake 
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• Peak heat flux at the 

outer target was 60% 
lower for the SF DN than 

for the standard DN case 
 

• Similar heat flux profiles 

at the inner target 
- Similarity of the inner 

     divertor geometry 
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084-13/TWP/ 

Heat flux behavior on the inner divertor target was similar for 
Snowflake and standard configurations 

• A perturbing mix of 
D2+neon had a greater 

effect on q^  in the outer 
divertor for the standard 

DN (i.e., reduced 50% vs 
25% for SF DN) 

 

• Comparable heat flux 

reduction (40-45%) on 
the inboard side for SF 

and standard DNs   

Radiating divertor case snowflake standard 
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Heat Flux Reduction via 

1. Snowflake Divertor Control 

2. Detachment Control 

3. Burn Control with 3D Coils 
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• Not enough detachment  Te and heat flux too high  Erosion 

• Too much detachment  Instabilities (MARFE) and core degradation  

• MARFE Instability: 

– Full detachment  large cold areas 

– Neutrals/Impurities influx  high radiation from the core 

– Thermal instability of the whole plasma 

 

Partial Detachment Control Needed for ITER 

www.efda.org efda.org 
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Effective Detachment Control at Constant Core Density 

Requires Two Feedback Channels 
D2 Fueling: 

Core Density Control 

D2 Fueling: 

Detachment Control 

 

RT-Divertor  
Thomson 

Interferometer  
Chord 

Density Meas. 

(Interferometer) 

Core Density 

Request 

Density 

controller 
- 

+ 
Upper 

Gas 

Valve 

Detachment Meas. 

(rt-Divertor Thom.) 

Detachment 

Request 

Detachment 

controller 
- 

+ Lower 

Gas 

Valve 

 

• Goal: Keep the core density and 

detachment level constant 

• Feedback Control Method: 
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Detachment Control in Action 

Strike Point 
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Inner Wall 

CIII Emission – Visible (465 nm) 

Outer Strike Point 

X-Point 
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Outer Strike Point 

X-Point 
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Partial Detachment Control: 

Forms a Cold Front in L-mode 

No Control (#153814) Control (#153816) 

Te profile  

 

 

 

Cold front shown in  

blue 

 

 eV 

 

• Control achieves partial detachment  

 
• Keep the cold front midway between the X-point and strike point 
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Control Stabilized Divertor Temperature (Detachment) 

but Keeps Core Density Constant 

Control (#153816) No Control (#153814) 
 

• Divertor Density Increases 

 

• But Core Density constant 

 
• Divertor Temperature 

reduces to 1 eV 

  

 

control start 
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Control Stabilized Divertor Temperature (Detachment) 

but Keeps Core Density Constant 

 
• Divertor Density Increases 

 

• But Core Density constant 

 
• Divertor Temperature 
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Heat Flux Regulation via 

1. Snowflake Divertor Control 

2. Detachment Control 

3. Burn Control with 3D Coils 
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• Burn: D + T  He + n + 17.6 MeV  

• ITER concerned with power surges during burning phase and 

burn entry/exit conditions  

• Normal methods (heating, density) are slow  

– Auxiliary heating control: more heating power capability – 

cost 

– Density control is limited:  

• Upper density set by Greenwald limit 

• Lower density set by detached divertor 

– Impurity injection: significant time delays for penetration?  

 

Burn Control: We Need Methods for Faster Control of Fusion Burn Rate 
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DIII-D 

I coils 

C coils 

• 10% change in energy confinement near ignition 

  factor of 2 reduction in fusion power   

• 3D magnetic field (n=3) reduces confinement in many plasma 

conditions by increasing edge stochasticity 

 3D coils actuator to control confinement time & fusion power 

Burn Control by Non-Axisymmetric (3D) Coils  

(Hawryluk, PPC/P2-33) 
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• Simulate the surge with 

Neutral Beams (NBI) 

 

• Add NBI steps (0.8 and 1.6 

MW) to see the effect on 

control 

 

• Control keeps the Burn 

(Stored Energy) constant: 

1. Adjust 3D coil current 

2. 3D coils in turn control 

the confinement time 

3. This keeps fusion 

power constant 

Non-Axisymmetric (3D) Coils Can Control Burn  

(Stored Energy) with Simulated Power Surge 
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Non-Axisymmetric (3D) Coils Can Control Burn  

(Stored Energy) with Simulated Power Surge 
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Non-Axisymmetric (3D) Coils Can Control Burn  

(Stored Energy) with Simulated Power Surge 
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Non-Axisymmetric (3D) Coils Can Control Burn  

(Stored Energy) with Simulated Power Surge 
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Non-Axisymmetric (3D) Coils Can Control Burn  

(Stored Energy) with Simulated Power Surge 
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• Simulate the surge with 

Neutral Beams (NBI) 
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Conclusion: New Control Solutions Enable Advances in  

Heat Flux Management  

 

 

• Advanced Magnetic Divertor Control reduces the peak heat 

flux without affecting the core properties 

 

 

• Double feedback Partial Detachment Control keeps the 

detachment front stable between the X-point and strike point, 

while keeping the core properties constant 

 

 

• Burn Control is feasible by using Non-Axisymmetric (3D) Coils 

  



36 E. Kolemen /IAEA/ Oct 2014 

Extras 
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Snowflake Control: ρ Control  

 

rho requested 

rho achieved 

Distance Scan  

 

• Constantρof 3, 5, 7 cm 

• ρscan from 3 to 15 cm. 

Distance Scans  
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Snowflake Control: 

Angle Control and Scans 

Angle Control/Scans  

 

• Constant angle for -75, -45, +10, +50 

• Scan from -75 to +25. 
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Snowflake Control: 

Combined rho and Angle Manipulation 

Snowflake (+) Snowflake (-)/exact 
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Divertor Peak Heat Flux Reduced by 2.5x in SF (-) Due To 

Changes in Divertor Geometry  

10 

S.L. Allen/IAEA FEC/November, 2012 

Divertor Peak Heat Flux Reduced 2.5X in SF due to 
changes in divertor geometry 

Standard 
Divertor 

Snowflake Snowflake 
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10 

S.L. Allen/IAEA FEC/November, 2012 

Divertor Peak Heat Flux Reduced 2.5X in SF due to 
changes in divertor geometry 

Standard 
Divertor 

Snowflake Snowflake (-) 

Allen IAEA ‘12 
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AT DN radiating divertor similar reducing heat to  

SFD without radiating divertor   

11 
T.W. Petrie/APS-DPP/Nov. 2013 

084-13/TWP/ 

Heat flux behavior on the inner divertor target was similar for 
Snowflake and standard configurations 

• A perturbing mix of 
D2+neon had a greater 

effect on q^  in the outer 
divertor for the standard 

DN (i.e., reduced 50% vs 
25% for SF DN) 

 

• Comparable heat flux 

reduction (40-45%) on 
the inboard side for SF 

and standard DNs   

Radiating divertor case snowflake standard 
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084-13/TWP/ 
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5 
T.W. Petrie/APS-DPP/Nov. 2013 

084-13/TWP/ 

Heat flux behavior in the Snowflake and the standard 
configurations have similarities and differences 

• SF: Expected bifurcation 
at outer target(s) 

 

No gas puffing case standard Snowflake 
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• Radiating divertor case:  

 

• A perturbing mix of 

D2+neon had a greater 

effect on q⊥ in the outer 

divertor for the standard 

DN   

• SF heat flux similar to 
radiating divertor 

 

 RED – Before gas puffing  

   BLUE – Radiating divertor  
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Snowflake with 2.5x Reduced Heat Flux Compatible 

with High Performance Plasmas 

9 
T.W. Petrie/APS-DPP/Nov. 2013 

084-13/TWP/ 

Heat flux behavior in the Snowflake and the standard 
configurations have similarities and differences 

• SF: Expected bifurcation 
at outer target(s) 

 

• Standard: No bifurcation 
 

• Peak heat flux at the 

outer target was 60% 
lower for the SF DN than 

for the standard DN case 
 

• Similar heat flux profiles 

at the inner target 
- Similarity of the inner 

     divertor geometry 
 

• SF: q^,IN > q^,out  
 

No gas puffing case standard Snowflake 
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11 
T.W. Petrie/APS-DPP/Nov. 2013 

084-13/TWP/ 

Heat flux behavior on the inner divertor target was similar for 
Snowflake and standard configurations 

• A perturbing mix of 
D2+neon had a greater 

effect on q^  in the outer 
divertor for the standard 

DN (i.e., reduced 50% vs 
25% for SF DN) 

 

• Comparable heat flux 

reduction (40-45%) on 
the inboard side for SF 

and standard DNs   

Radiating divertor case snowflake standard 
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standard Snowflake 

11 
T.W. Petrie/APS-DPP/Nov. 2013 

084-13/TWP/ 

Heat flux behavior on the inner divertor target was similar for 
Snowflake and standard configurations 

• A perturbing mix of 
D2+neon had a greater 

effect on q^  in the outer 
divertor for the standard 

DN (i.e., reduced 50% vs 
25% for SF DN) 

 

• Comparable heat flux 

reduction (40-45%) on 
the inboard side for SF 

and standard DNs   

Radiating divertor case snowflake standard 
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standard Snowflake 

5 
T.W. Petrie/APS-DPP/Nov. 2013 

084-13/TWP/ 

Heat flux behavior in the Snowflake and the standard 
configurations have similarities and differences 

• SF: Expected bifurcation 
at outer target(s) 

 

No gas puffing case standard Snowflake 
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• βN = 3.0 and H98(y,2) ≅ 

1.35 conditions preserved 

with SF with no adverse 

effects  

• Outer:  

– SF bifurcating targets 

– Peak heat flux outer 

reduced by 2.5x for the 

SF AT 

• Inner: 

– Similar heat flux profiles 

at the inner target  

– SF: qP
⊥,Iin  > qP

⊥,out  
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Snowflake Control: 

rho scan in Snowflake (-) (-45 deg) 

Angle Control/Scans  
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Snowflake Control: 

rho scan in Snowflake (+) (+55 deg) 
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Snowflake Control: 

Snowflake from t=2 sec 

Time [ms]

ρ [cm]

θ [degrees]

PF4B [Amp]

PF5B[Amp]

PF8B [Amp]


