Feedback of a neoclassical tearing mode on drift wave - Zonal Flow turbulence

M. Leconte¹, PH. Diamond^{1,2} and Dong-Keun Oh¹

¹WCI Center for Fusion Theory NFRI, Korea

²CMTFO and CASS UCSD, USA

Acknowledgements: A. Ishizawa, Kaijun Zao, K. Miki

Outline

- Introduction
- 2 Motivation: evidence of turbulence role in island evolution
- 3 Neoclassical Tearing Mode model with turbulence feedback
 - Basic Mechanism
 - Equations
 - 0D NTM predator-prey model
 - 1D NTM predator-prey model
- Experimental signatures
 - Predictions of the model
- Discussion
- Summary and conclusions

General Intro

- predicting Neoclassical Tearing Mode onset critical to ITER
- What is the role of microturbulence and Zonal Flows?

onset & control of an NTM on JT60U [Isayama PPCF 2000]

- What sets the threshold island width?
 - Effect of turbulence on the bootstrap-current?
 - Effect of island on turbulence drive & ZFs ?
- ad-hoc heat diffusivity χ_{\perp} in island \leftrightarrow turbulence
- turbulence-ZF sets threshold island width
- neoclassical picture: trapped particles: \(\sim \nabla p \)
 ⇒ bootstrap current

Evidence for turbulence role in island evolution

Evidence of turbulence role in island dynamics (HL-2A)

K. Zao APTWG'13

- island modulates turbulence
- m=0,n=0 mode (ZF) couples to the 3:1 vortex flow

Neoclassical Tearing Mode: Basic Mecanism Qu & Callen '85, Carrera '86

associated to bootstrap current:

Ohm's law

$$\delta j_{\parallel} = \delta j_{\parallel}^{\text{induct}} - D_{\parallel} \nabla_{\parallel} (\delta \phi - \delta n) + \sqrt{\epsilon} \frac{\partial}{\partial x} \delta p$$

- due to neoclassical damping of electron flow & enhanced by trapped-electrons (trapped-fraction $\sqrt{\epsilon}$)
- island growth and saturation if Δ' < 0 [Carrera '86] temperature flattened by island → modified Rutherford Eq:

$$\frac{dW}{dt} = \Delta' + \Delta_{bs}(W)$$

• $\Delta_{bs}(W) \sim \frac{\beta_p}{W}$, for large W, with β_p : poloidal beta

What sets the threshold island width?

- Key point: competition between:
- parallel heat transport along tilted field lines
 v.s. \(\perp \) heat transport across flux surfaces
- [Fitzpatrick 1995]

island growth if:
$$extbf{W} \gg extbf{W}_{turb0} = \Big[rac{\chi_{turb}}{\chi_{\parallel}} rac{L_{s}^{2}}{k_{y}^{2}} \Big]^{1/4}$$
, with χ_{turb} : ad-hoc

but

- χ_{turb} **self-consistently** determined @ constant power Q \hookrightarrow threshold island width = power threshold (onset β_p)
- χ_{turb} is affected via:
 - i) self-regulation by ZFs i.e. ZF \nearrow : turb. \searrow
 - ii) depletion of turbulence drive i.e. $\nabla T_e \setminus :$ turb. \setminus
 - iii) island-induced ZF damping i.e. ZF \ : turb. ≯
 - $\hookrightarrow \chi_{turb} = \chi_{turb}(W, Q)$

Marginal stability of NTM coupled to marginal stability of DW-ZF \rightarrow extended onset criterion

- parallel transport v.s.
 \(\preceq \) transport (including effect of island)
- marginal stability (d/dt = 0) of DW-ZF predator-prey model perturbed by island

 ⇒turbulence energy ε (and ZF energy V_{ZF}) as function of heat flux Q and island-width W
- inject in marginally stable Rutherford equation (below)

 → extended criterion for island growth:

island growth if:
$$\frac{QW}{W^2 + W_{turb0}^2 \sqrt{\epsilon(W,Q)/\epsilon_0}} - |\Delta'| \geq 0$$

Marginally stable turbulence/ZF energy v.s. heat flux Q

and island-width W

0D model: predator-prey model with NTM coupling

Equations

$$\begin{array}{lcl} \frac{d\epsilon}{dt} & = & \frac{Q\epsilon}{W_{turb0}^4[\epsilon/\epsilon_0] + W^4} - \alpha\epsilon v_{ZF}^2 - \gamma_{NL}\epsilon^2 \\ \\ \frac{dv_{ZF}^2}{dt} & = & \alpha\epsilon v_{ZF}^2 - \left[1 + \frac{\mu_{MHD}}{\mu}W^4\right]\mu v_{ZF}^2, \text{ with } \quad (\mu_{MHD}W^4/\mu) \ll 1 \\ \\ \frac{dW}{dt} & = & -|\Delta'| + \frac{QW}{W_{turb0}^2\sqrt{\epsilon/\epsilon_0} + W^2} \end{array}$$

- with fixed heat flux $Q \leftrightarrow \beta_p$
- ε: DW turbulence energy
- v_{ZF}^2 : Zonal Flow energy
- W: island-chain width
- α: DW-ZF coupling parameter
- $\mu \sim \nu_{ii}$: ZF neoclassical friction
- turb. driven by electron temperature gradient (TEM, ETG...)

Model curve dW/dt v.s. W (analytic) w/o ZFs

- modifications of NTM onset / no effect on NTM saturation
- no ZFs: threshold island larger than Fitzpatrick threshold.
- self-consistent model curve with Zonal Flows not tractable analytically (co-dimension 2 bifurcation)

 → numerical evaluation

At marginal stability dW/dt = 0, $d\epsilon/dt = 0$, $dV_{ZF}^2/dt = 0$

case	turb. energy	threshold island
w/o ZF	$\epsilon = \epsilon_1(W,Q) \sim \sqrt{W^8 + 4Q/\gamma_{NL}} - W^4$	graphically
with ZF	ϵ set by ZFs and W	using 0D code

 With ZFs, turbulence at marginal stability exhibits a threshold in Q and W

$$\epsilon = \epsilon_1(W, Q) - [\epsilon_1(W, Q) - \epsilon_2]H(\epsilon_1(W, Q)/\epsilon_2 - 1))$$

 codimension-2 threshold represented by Heaviside function

$$H(\epsilon_1(W,Q)/\epsilon_2-1))$$

Numerical Results: Dynamics & stability of 0D model

with Zonal Flows: unstable

 turb. regulated by ZFs: seed-island succeeds in flattening T_e profile: turb \(\sqrt{thus ZFs} \)

Note 1: ZFs destabilize NTMs

w/o Zonal Flows: stable

 turb. regulated by self-damping: seed-island cannot flatten T_e profile

Note 2: NTM seed-island modifies the DW-ZF dynamics

Zonal Flow impact on model curve dW/dt = f(W) [numerical]

- modifications of NTM onset / no effect on NTM saturation
- with ZFs: threshold island & β_{onset} smaller than w/o ZFs.
- ullet note that larger dW/dt corresponds to **smaller** eta_{onset}

1D model: predator-prey model with NTM coupling

$$\begin{array}{rcl} \frac{\partial I}{\partial t} & = & \left[-\frac{\partial T_e}{\partial x} + \frac{\partial T_e}{\partial x} \Big|_c \right] I - \alpha I v_{ZF}^2 + \frac{\partial}{\partial x} \left[I \frac{\partial I}{\partial x} \right] \\ \frac{\partial v_{ZF}^2}{\partial t} & = & \alpha I v_{ZF}^2 - \left[1 + \frac{\mu_{MHD}(x, W)}{\mu} W^4 \right] \mu v_{ZF}^2 \\ \frac{\partial W}{\partial t} & = & -|\Delta'| - \frac{c_1}{W} \frac{\partial T_e}{\partial x} \Big|_{sep} \end{array}$$

• with Cst heat flux (heat source), based on *Miki et al.* PoP '12

$$\frac{\partial T_e}{\partial t} = \frac{\partial}{\partial x} \left[\chi_{QL} I \frac{\partial T_e}{\partial x} \right] + S_{heat}$$

- island-induced T_e flattening not implemented yet (in 1D)
- $\bullet \ \ \text{cannot address threshold physics} \to \textbf{saturation physics} \\$
- I: DW turbulence intensity
- v_{ZF}^2 : Zonal Flow intensity

NTM saturation physics: negative feedback on ZFs

• T_e flattening not implemented: \rightarrow ZFs \searrow and turbulence \nearrow in island region

• island-width is modulated:

Predictions of the 0D NTM Predator-Prey model

Threshold island-width

Fitzpatrick '95
$$W \geq W_{turb0} \sim \epsilon_0^{1/4} \chi_\parallel^{-1/4}$$
 with turb. energy ϵ_0 ad-hoc $\chi_\parallel \sim \nu_{ei}^{-1}$

our model with ZFs
$$W \geq W_{turb} \sim \mu^{1/4} \chi_{\parallel}^{-1/4}$$
 with $\mu \sim
u_{jj}$

Model curve dW/dt v.s. W for different ZF damping μ

- ZFs destabilize NTM
- neoclassical ZF damping: stabilizes NTM

predictions: scaling with

• ion-ion collision freq.: ν_{ii} : suggests collisionality scan

Discussion

- Threshold island-width predicted to depend on ZF damping
 - predicts threshold island: / with neo ZF damping
 - with island-induced ZF damping
- key-points:
 - Zonal Flows regulate turbulence → smaller threshold-island
 - ullet depletion of turbulence-drive due to T_e flattening
- open question: turbulence spreading into the island?
- prediction of island-width modulation by the DW-ZF limit-cycle \leftrightarrow LCO in (ϵ, V_{ZF}, W) space experimental evidence? (K. Zhao unpublished) expression for the DW-ZF-island LCO frequency? without island: $\omega_{LCO} \sim \sqrt{Q\mu}$

Summary and conclusions

- Feedback of island on Zonal Flows
- \(\square\) threshold island-width @low collisionality
- key-point:
 - \hookrightarrow ZFs regulate turbulence, cross-field transport \searrow
- prediction of island-width modulation by the DW-ZF limit-cycle
- Open Questions
 - Back-reaction of Zonal Flows on island: polarization current?
 Coherent ZFs v.s. random ZFs? flow direction @ resonance surface? (associated to screening/amplif.)
 - island effect on turbulence-driven toroidal rotation? (Toroidal Zonal Flows)