

Overview of Recent Physics Results from NSTX

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** ORNL PPPL **Princeton U** Purdue U SNI Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U Wisconsin** X Science LLC

S.M. Kaye (Presented by S.A. Sabbagh)

PPPL, Princeton University Princeton, NJ 08543 USA

> FEC IAEA Mtg. St. Petersburg, RU 18-23 October 2014

*This work supported by the US DOE Contract No. DE-AC02-09CH11466

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA. Frascati CEA. Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep

NSTX completed operation in Fall 2010 for start of NSTX-Upgrade construction

NSTX-U research goals address key issues that need to be resolved for next-step Spherical Tokamaks (ST)

- 1. Advance ST for Fusion Nuclear Science Facility (FNSF), including noninductive operation
 - 100% non-inductive operation
 - Stable high-performance, steady-state control
- 2. Develop solutions for plasma-material interface challenge
 - Mitigation of high heat flux (q_{peak}~40 MW/m², P_{heat}/S~0.5 MW/m²)
 - Optimization of pedestal/SOL interface
- 3. Explore unique ST parameter regimes to advance predictive capability for ITER and beyond
 - Access reduced collisionality
 - Role of high ExB and parallel flow shear
 - Understand enhanced confinement and stability

NSTX-Upgrade will access next factor of two increase in performance to bridge gaps to next-step STs

🔘 NSTX-U

1. Advance ST for Fusion Nuclear Science Facility (FNSF), including non-inductive operation

- 100% non-inductive operation
- Stable high-performance, steady-state control
- Free-boundary TRANSP predictive simulations indicate mixture of sources necessary to achieve 100% stable, non-inductive operation
 - Has been used for ITER scenario development (R. Budny, F. Poli)

Topics to be discussed

- Coaxial Helicity Injection (CHI) physics (plasma initiation)
- HHFW deposition and losses (current ramp-up)
- NB (fast ion) physics and impact of MHD on CD (sustainment)
- Stability and control

Understand reconnection physics to extrapolate CHI discharge initiation to next-steps CHI Physics

- Resistive simulations have been performed using the extended-MHD NIMROD code – physics is 2D
- Simulations reproduce flux closure for expt'l conditions
- Flux closure/plasma current scales with injector voltage time decay, flux footprint as in experiment
- Simulations indicate Sweet-Parker type reconnection
 - Elongated current sheet
 - Current sheet width
 - Inflow/outflow
- Extrapolates to 400 kA startup current in NSTX-U
 R. Raman, TH/6-55, Wed. PM

F. Ebrahimi, Phys. Plasmas 20 090702 (2014)

5

Understand HHFW propagation and losses in order to use it effectively for current ramp-up

- AORSA simulations predict reduced HHFW SOL field amplitudes at low SOL density (n_{ant})
 - Waves evanescent at low n_{ant}
 - Waves propagate at high n_{ant}
 - Higher SOL losses at higher n_{ant}
 - Consistent with experiment

Possible ICRF coupling issues in ITER – large outer gap, similar harmonic range

n_{cutoff} will be at higher n_{SOL} in NSTX-U

$$n_{SOL,cutoff} \propto rac{k_{\parallel}^2 B}{w}$$

Wider SOL density range with lower SOL losses

N. Bertelli, Nuc. Fusion 54 083004 (2014)

HHFW Physics

Understanding and predicting fast ion physics critical for optimizing NB current drive

NBI Physics

- NSTX/NSTX-U well equipped to explore broad range of Energetic Particle (EP) scenarios as required for projections to ITER, FNSF
- Redistribution of fast ions due to EP modes impact NBCD
- Mapping unstable regimes guides development of discharges with reduced or suppressed MHD

Low-f MHD mapped through M3D-K code

G.-Y. Fu Phys. Plasmas 20 102506 (2013)

7

High frequency Alfvén activity can also impact NB heating and current drive

- High frequency (Global/Compressional) Alfven activity modified by 3D fields
 - Change in bursting, chirping frequencies
 - Modified $\partial F / \partial v_{\perp}$ due to 3D fields
 - Assess whether RMP coils will impact AE and/or alpha/NBI fast-particle confinement for ITER (and FNSF)
- HYM code shows coupling of CAEs to Kinetic Alfven waves
 - Energy channeling from fast ions to CAE (at r/a~0) to KAW (r/a~0.3)
 - Estimate power channeling of up to ~ 0.4 MW over range of realistic (inferred) mode amplitudes (for one mode)
 - Critical for NB heating/CD profiles & thermal electron transport studies

A. Bortolon PRL 110 265008 (2013)

Rotation control is critical to plasma stability

- Kinetic RWM stability theory and comparison to NSTX sets the stage for practical use in NSTX-U for disruption avoidance
 - Optimum rotation frequency for stability found
- NSTX-U controller will use Neoclassical Toroidal Viscosity (NTV) physics for the first time in rotation feedback control
 - Control toward optimum rotation frequency
- Physics basis of NTV being studied using NTVTOK (S. Sabbagh, EX/1-4), POCA (K. Kim)

Instability measure (RFA) vs. exp. ω_{E} for NSTX

Stability

J. Berkery, Phys. Plasmas 056112 (2014)

9

2. Develop solutions for plasma-material interface challenge

- Mitigation of high heat flux (q_{peak}~40 MW/m², P_{heat}/S~0.5 MW/m²)
- Optimization of pedestal/SOL interface

Topics to be discussed

- Heat flux mitigation via divertor configuration and radiation
- Development and exploration of more resilient materials (liquid lithium)
- Attractive integrated core/pedestal/divertor performance regimes

Modeling supports snowflake and impurity-seeded radiative divertors as heat flux mitigation candidates in NSTX-U

Temperature-enhanced erosion leads to a continuous vapor-shielding regime

- In-situ measurements indicate enhanced Li erosion in NSTX divertor targets over restricted temperature range
- Lithium erosion studies conducted up to 1300C on Magnum-PSI plasma device to mimic expected NSTX-U divertor conditions
 - Lithium evaporated layer on Mo
 - Deuterium plasma
- Suppressed lithium emission observed at high temperatures and high D⁺ fluxes due to lithium deuteride (LiD) formation
- Lithium trapping forms stable vapor cloud up to 1000C target temperature
 - Motivates continuously vapor-shielded divertor target studies for heat flux mitigation
 - NSTX-U will determine maximum Li PFC temperatures consistent with good confinement

Enhanced Pedestal H-mode provides one attractive integrated core, pedestal and divertor scenario

Pedestal/SOL

- EP H-mode is a high performance scenario with high wide pedestal and excellent H_{98v2} (up to 2)
- New discovery of long pulse EP H-mode lasting for duration of pulse
- Lithium conditioning integral
 - EP H-mode increases H_{98y,2} by 50% over already enhanced H-factor with lithium
- Related to strong velocity shear
 Trigger with 3-D fields?
- Plan to couple with divertor solutions in NSTX-U

S. Gerhardt, Nuc. Fusion 54 083021 (2014)

3. Explore unique ST parameter regimes to advance predictive capability - for ITER and beyond

- Access reduced collisionality
- Role of high ExB and parallel flow shear
- Understand enhanced confinement and stability

Be able to predict confinement and transport

Topics to be discussed

- Highly anomalous electron transport
- Neoclassical vs anomalous ions
- Fast ion transport

Electron transport at high collisionality well explained by microtearing modes

Electron Transport

- Predictive TRANSP simulations using reduced transport model based on microtearing modes (Rebut-Lallia-Watkins, 1988)
 - T_e predictions agree with measurements when microtearing predicted to be dominant
- At low collisionality, microtearing subdominant
 - Poor agreement
 - Need to develop predictive model when microtearing subdominant
- Need to develop predictive model for influence of CAE/KAW in very core

S. Kaye, Phys. Plasmas 21 082510 (2014)

Strong flow shear can <u>destabilize</u> Kelvin-Helmholtz instability

IonTransport

- Linear theory: $|ML_n/L_{\omega}| > 1$ for instability
- Non-linear global **GTS** simulations indicate Kelvin-Helmholtz (K-H) unstable in L-mode
 - K-H identified in simulation by finite k_{\parallel}
- K-H/ITG turbulence + neoclassical ion transport within factor of ~2 of expt'l level

– e⁻ transport seriously underestimated

0.5

0.0

-0.5

FEC 2014 - OV4-3, S. Kaye (presented by S. Sabbagh)

Predictive capability for fast ion response to Alfvén Eigenmodes has been developed Fast ion transport

- New "kick" model being implemented in NUBEAM/TRANSP M. Podesta, EX/10-4, Fri. PM
 - Models phase-space kicks in constants of motion from multiple instabilities with time-varying amplitudes
 - Provides accurate estimates for fast ion distribution function and NB-driven current
- Initial validation with stand-alone NUBEAM successful for TAEs, kink-like modes on NSTX M. Podesta, PPCF 56 055003 (2014)

- 1.5D Critical Gradient Model (CGM) predicts relaxed fast ion profiles for given instabilities
 N. Gorelenkov, EX/10-4, Fri. PM
- Both models potentially useful for FNSF, ITER predictions

NSTX-U research aims to establish physics basis for next-step STs such as an FNSF and Pilot Plant

- Develop and implement techniques for non-inductive operation from startup to sustainment
- Develop solutions to projected high heat fluxes to the PFCs
- Explore unique ST parameter regime to advance predictive capability at low collisionality, high beta and high flow and flow shear
- NSTX-U research operations will commence in Spring 2015

NSTX-U Presentations at the 2014 IAEA

- Orals
 - Physical Characteristics of Neoclasical Toroidal Viscosity in Tokamaks for Rotation Control and the Evaluation of Plasma Response (S. Sabbagh), EX/1-4 – Tuesday AM
 - Effects of MHD Instabilities on Neutral Beam Current Drive (M. Podesta given by W. Heidbrink), EX/10-4 –
 Friday PM
 - Configuration studies for an ST-based Fusion Nuclear Science Facility (J. Menard given by L. El-Guebala), FNS/1-1 – Saturday AM
- Posters
 - Developing and Validating Predictive Models for Fast Ion Relaxation in Burning Plasmas (N. Gorelenkov), TH/P1-2 – Tuesday AM
 - Computation of Resistive Instabilities in Tokamaks with Full Toroidal Geometry and Coupling Using DCON (J.-K. Park), TH/P1-5 – Tuesday AM
 - Full Wave Simulations for Fast Wave Heating and Power Losses in the Scrape-off Layer of Tokamak Plasmas (N. Bertelli), TH/P4-14 – Wednesday PM
 - Impact of 3D Fields on Divertor Detachment in NSTX and DIII-D (J.-W. Ahn), EX/P6-53 Thursday PM
 - Experimental Observation of Nonlocal Electron Thermal Transport in NSTX RF-Heated L-Mode Plasmas (Y. Ren), EX/P6-43 – Thursday PM
 - The Role of Lithium Conditioning in Achieving High Performance, Long Pulse H-Mode Discharges in the NSTX and EAST Devices (R. Maingi), EX/P6-54 – Thursday PM
 - Modeling Divertor Concepts for Spherical Tokamaks NSTX, NSTX-U, and ST-FNSF (E. Meier), TH/P6-50
 Thursday PM
 - Transient CHI Plasma Start-up Simulations and Projections to NSTX-U (R. Raman), TH/P6-55 Thursday PM
 - Progress Toward Commissioning and Plasma Operation in NSTX-U (M. Ono), FIP/P8-30 Friday PM

Backup

NSTX-Upgrade will access next factor of two increase in performance to bridge gaps to next-step STs

- Collisionality for transport and stability
 • f_{BS} (boostrap fraction) for non-inductive CD
- P/S for divertor heat loading

NSTX-Upgrade will access next factor of two increase in performance to bridge gaps to next-step STs

NSTX completed operation in Fall 2010 for start of Upgrade construction

 NSTX-Upgrade will access next factor of two increase in performance to bridge gaps to next-step STs

NSTX

Upgrade

0.94

≥ 1.5

2

≤ 19*

20

0.4-0.6

NSTX

0.86

≥ 1.3

1

0.5

≤ 8

10

0.2

Fusion

Nuclear

Science

Facility

1.3

≥ 1.5

4 - 10

2 - 3

22 - 45

30 - 60

0.6 - 1.2

1 - 2

Pilot Plant

1.6 - 2.2

≥ 1.7

11 - 18

2.4 - 3

50 - 85

70 - 90

0.7 - 0.9

2 - 10

Low-A Power Plants

ARIES-ST (A=1.6)

\bigcirc	NSTX-U

Parameter

Major Radius R₀ [m]

Plasma Current [MA]

Auxiliary Power [MW]

Aspect Ratio R_0/a

Toroidal Field [T]

P/R [MW/m]

P/S [MW/m²]

Fusion Gain Q

FEC 2014 – OV4-3, S. Kaye (presented by S. Sabbagh)

Understand reconnection physics to extrapolate CHI discharge initiation to next-steps

CHI Physics

- Resistive simulations have been performed using the extended-MHD NIMROD code – physics is 2D
- Simulations with magnetic diffusivities similar to exp't produce flux closure
- Flux closure/plasma current scales with injector voltage time decay, flux footprint as in experiment
- Simulations indicate Sweet-Parker type reconnection
 - Elongated current sheet
 - Current sheet width
 - Inflow/outflow

F. Ebrahimi

Understand reconnection physics to extrapolate CHI discharge initiation to next-steps

CHI Physics

- Resistive simulations have been performed using the extended-MHD NIMROD code – physics is 2D
- Simulations reproduce flux closure for expt'l conditions
- Flux closure/plasma current scales with injector voltage time decay, flux footprint as in experiment
- Simulations indicate Sweet-Parker type reconnection
 - Elongated current sheet
 - Current sheet width
 - Inflow/outflow

F. Ebrahimi

Understand reconnection physics to extrapolate CHI discharge initiation to next-steps CHI Physics

- Resistive simulations have been performed using the extended-MHD NIMROD code – physics is 2D
- Simulations reproduce flux closure for expt'l conditions
- Flux closure/plasma current scales with injector voltage time decay, flux footprint as in experiment
- Simulations indicate Sweet-Parker type reconnection
 - Elongated current sheet
 - Current sheet width
 - Inflow/outflow

Understand reconnection physics to extrapolate CHI discharge initiation to next-steps CHI Physics

- Resistive simulations have been performed using the extended-MHD NIMROD code – physics is 2D
- Simulations reproduce flux closure for expt'l conditions
- Flux closure/plasma current scales with injector voltage time decay, flux footprint as in experiment
- Simulations indicate Sweet-Parker type reconnection
 - Elongated current sheet
 - Current sheet width
 - Inflow/outflow

Understand HHFW propagation and losses in order to use it effectively for current ramp-up

HHFW Physics

- AORSA simulations predict reduced HHFW SOL field amplitudes at low SOL density (n_{ant})
 - Wave is evanescent at low density
 - Wave can propagate at higher density
- Higher SOL losses at higher density
 - Consistent with experiment

Understand HHFW propagation and losses in order to use effectively for current ramp-up

HHFW Physics

- HHFW field amplitude depends on location of righthand cutoff
 - When region in front of antenna is cut off (low n_{SOL}), low field amplitudes
 - When region in front of antenna is propagating (high n_{SOL}), high field amplitudes

AORSA simulations predict reduced SOL losses with existence of evanescent region at low SOL density (n_{ant})

Understand HHFW propagation and losses in order to use effectively for current ramp-up

HHFW Physics

- HHFW field amplitude depends on location of righthand cutoff
 - When region in front of antenna is cut off (low n_{SOL}), low field amplitudes
 - When region in front of antenna is propagating (high n_{SOL}), high field amplitudes

Understand HHFW propagation and losses in order to use it effectively for current ramp-up

HHFW Physics

- AORSA simulations predict reduced HHFW SOL field amplitudes at low SOL density (n_{ant})
 - Wave is evanescent at low density
 - Wave can propagate at higher density
- Higher SOL losses at higher density
 - Consistent with experiment

 n_{cutoff} will be at higher n_{SOL} in NSTX-U $k_{\mu}^2 B$

$$n_{SOL,cutoff} \propto \frac{\kappa_{\parallel}}{W}$$

Wider SOL density range with lower SOL losses

High frequency Alfvén activity can also impact NB heating and current drive

- High frequency (Global/Compressional) Alfven activity modified by 3D fields
 - Change in bursting, chirping frequencies
 - Modified $\partial F / \partial v_{\perp}$ due to 3D fields
 - Assess whether RMP coils will impact AE and/or alpha/NBI fast-particle confinement for ITER (and FNSF)
- HYM code shows coupling of CAEs to Kinetic Alfven waves
 - Energy channeling from fast ions to CAE (at r/a~0) to KAW (r/a~0.3)
 - Estimate power channeling of up to ~ 0.4 MW over range of realistic (inferred) mode amplitudes (for one mode)
 - Critical for NB heating/CD profiles & thermal electron transport studies

<u>Future Work</u>: Perform non-linear HYM simulations to calculate actual level of energy transfer and effect on T_e ; develop predictive capability

E. Belova

Understanding the physics basis for NTV crucial for predicting effects in NSTX-U

- POCA, NTVTOK Indicate importance of kinetic resonances, collisionality
- NTVTOK
 - Valid for all collisionality regimes for e^- , i^+
 - Importance of finite orbit effects average flux surface δr over banana width)
- POCA
 - Follows individual guiding center orbits
 - Calculates δf in non-axisymmetric ideal equilibrium determined by IPEC

Understanding rotation braking from RMP will be important for ITER ELM control

An integrated disruption Prediction-Avoidance-Mitigation (PAM) framework is being developed

- Key elements are:
 - State-space controller for stability control
 - Physics-based disruption warning algorithm with >96% success rate
 - MGI system with gas injection at different poloidal locations

Control

Lithium wall conditioning influences pedestal profiles and microstability characteristics

- Higher T_e, T_i with lithium
- Lower pedestal density, wider n_e pedestal (top moves in)

 Microtearing impt at pedestal top, TEM/KBM in gradient region (GS2)

Both neoclassical and MHD processes important for understanding power deposition

 Heat flux widths controlled by neoclassical processes in collisionless limit, scaling as 1/I_p^{1/2}

- Expt scales as 1/I_p^{0.8}

- ELMs and macrostability characteristics influence heat deposition
 - Lower n MHD leads to fewer striations, narrower heat flux width

Tokamak and test stand PMI studies support plans for metal substrates to be used on NSTX-U

- In-situ measurements indicate temperatureenhanced Li sputtering for lithiated graphite and lithiated Mo substrates
- Lithium erosion studies conducted up to 1300C on Magnum-PSI plasma device to mimic NSTX-U
 - Lithium evaporated layer
 - Deuterium plasma
- Studies find suppressed lithium emission at high temperatures
 - High D flux results in LiD mixed material
 - Results in reduced Li evap., increased D sputtering
- Lithium trapping forms stable vapor cloud up to 1000C
 - Motivates continuously vapor-shielded divertor target studies
 - Need to re-evaluate acceptable Li PFC temperature limits in NSTX-U

Modeling supports snowflake and impurity-seeded radiative divertors as heat flux mitigation candidates in NSTX-U

Heat flux mitigation

Test stand PMI studies support plans for Li-coated metal substrates to be used on NSTX-U

- Lithium erosion studies conducted up to 1300C on Magnum-PSI plasma device to mimic NSTX-U
 - Lithium evaporated layer on Mo
 - Deuterium plasma
- Studies find suppressed lithium emission at high temperatures
 - High D flux results in LiD mixed material
 - Expected in NSTX-U divertor
 - Results in reduced Li evap., increased D sputtering
- Lithium trapping forms stable vapor cloud up to 1000C target temperature
 - Motivates continuously vapor-shielded divertor target studies
 - Need to re-evaluate acceptable Li PFC temperature limits in NSTX-U

Enhanced Pedestal H-mode offers opportunity for high-performance (H_{98y,2}~1.5 to 2)

High performance

- Spontaneous trigger from H-phase
- MHD quiescent, confinement at levels necessary for FNSF
- Strong edge velocity shear may provide reliable trigger for mode

- Through 3D fields?

