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KEY NEW RESULTS
• I-mode has now been obtained on Alcator C-Mod, 

ASDEX Upgrade and DIII-D.
– Regime is ELM-free, can obtain high normalized 

energy confinement, with low power degradation, 
and has low particle confinement.

• Wide ranges of device and dimensionless parameters, 
including low * and q95.

• Changes in pedestal turbulence, and Er shear, are 
observed in all devices.

• L-I threshold increases with ne, but weak BT dependence.
• Upper range of power for I-mode increases with BT, 

making regime more steady and robust at higher field.  



Features of 
I-mode regime

I-mode regime is characterized by [Whyte 2010]:
1. Edge thermal barrier, increased energy confinement.
2. L-mode particle confinement (no density barrier).
3. Changes in pedestal turbulence.

Advantages over H-mode:
• Regime is generally ELM-Free, while remaining stationary.
• Avoids accumulation of impurities (from PFCs, seeding, ‘ash’).
• More favourable dependence of E on power than L or H-mode.
This has motivated multi-machine studies of regime properties and 
access conditions, in both Transport and Pedestal ITPA groups.



I-mode is now established on Alcator 
C-Mod, ASDEX Upgrade and DIII-D, 

over wide parameter ranges.
C‐Mod AUG DIII‐D

Ip (MA) 0.56‐1.4 0.8‐1.0 0.96‐1.4

BT (T) 2.8‐8.0 1.9‐2.5 2.04

q95 2.4‐5.2 3.0‐4.1 3.5‐5.2

0.9‐2.3 0.16‐0.3 0.22‐0.51

Ploss (MW) 1.5‐5.1 1.6‐3.0 2.4‐4.1
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All results in this poster are from D plasmas, with ion  B×B drift away 
from active divertor (ie ‘unfavourable’ drift for H-mode)
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Alcator C-Mod

• 1.1 MA, 5.8 T, q95=3.4
• LSN, upwards B×B drift.
• ICRF heating

ASDEX Upgrade

• 1 MA, 2.45 T, q95=4.
• USN, B×B drift downward. 
• NBI + ECH heating. 

Ryter 2011



DIII-D

• 0.98 MA, 2.05 T, q95=5.1
• LSN, upwards B×B drift.
• NBI heating 
• Note Ti > Te in DIII-D pedestals 

with NBI.
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Stored energy increases strongly 
with input power

• Much less power degradation 
of E than in H-mode (all 
devices). 

Regression fit to C-Mod data gives 
E=0.014 Ip0.68p BT

0.77P − 0.29       [Walk 2014]

• AUG and DIII-D find H98
independent of heating method.

• H98 tends to increase with density 
(AUG and C-Mod)
– Due to transition thresholds, 

ne and power ranges are correlated.

C-Mod

AUG
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Stored energy and H98 are 
correlated with pedestal pressure 

• Consistent with fairly stiff thermal transport in core, most of 
confinement improvement due to pedestal increase.

• Unlike H-mode, pedestal pressure does not saturate in I-mode at 
high power, which explains the weak confinement degradation.

Plots of W vs Pped, multi-
machine.  Perhaps also Pped 
vs power?
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Normalized pressure and density so far 
lower than H-modes

• Achieved N is modest, ~1.4.
– Does not seem to be set by an 

MHD limit, rather by I-H 
transitions (AUG, D3D) or 
available power (C-Mod).

• Density to date up to 60% of 
Greenwald limit.
– Also does not seem an intrinsic 

limit.
– On C-Mod, density range can be 

increased by fueling into I-mode, 
and increases with heating power.
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Extending these ranges is a goal of ongoing experiments.
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Pedestal Physics
In all devices, a temperature pedestal (Te and Ti) develops in 
I-mode, while density profiles remain close to L-mode. 
Clear separation, not yet well explained, between thermal and particle 
transport, motivates detailed measurements of profiles and turbulence.

Alcator C-Mod 

Ti pedestals close to Te
(in similar discharge) 1.1 MA, 5.8 T, q95=3.4



ASDEX Upgrade

• 1 MA, 2.45 T, 
q95=4 

• USN, B×B drift 
downward. 

• 2.5 MW NBI 
heating + 0.7 MW 
ECH.

• Ti pedestal ~ Te. 

DIII-D
• 1.2 MA, 2.05 T, q95=4.3
• LSN, B×B drift 

upwards 
• 3 MW NBI in I-mode.
• Ti pedestal > Te.



Er well develops in T pedestal region, 
may play role in turbulence reduction

AUG:  Doppler reflectometry shows 
progressively deeper Er well during 
I-mode, to -16 kV/m in this case.  
CXRS measures Er as low as -30 kV/m 
in other I-mode discharges. 

C-Mod:  CXRS using B5+ 

measures Er well during 
I-mode, to -80 kV/m in this 
case (variable).
ExB shear is significant, though 
weaker than in H-modes.

DIII-D: Weaker Er well, near 0 at 
minimum, measured by CXRS. 

Theiler 
2014
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I-mode pedestals span wide 
parameter ranges, reach low *

• Devices have distinct Te, ne
ranges 

• Up to Tped=1 keV,  
nped=1.6x1020 m-3.

• Dimensionless parameters 
overlap.

• Down to *ped=0.17, *ped=2.2x10-3

– no sign of limits in these parameters.
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Pedestals are stable to peeling-
ballooning MHD and Kinetic Ballooning 

Mode, explaining lack of ELMs.
• ELITE shows pressure  gradient  

well below limit, room to 
increase further; Analysis on 
DIII-D is consistent.   

• Pedestal is wider than for ELMy 
H-modes, exceeds p

0.5 scaling 
in EPED* based on KBM limit 
(on both DIII-D and C-Mod).
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Changes in turbulence and fluctuations 
occur at L-I transitions in each device

• As the T pedestal forms, see 
– A DECREASE in edge broadband 

turbulence (n and B) in mid-f range 
(~60-150 kHz), correlated to 
decreasing eff.

– Usually a PEAK in turbulence (n, T and 
B) at higher f “Weakly Coherent 
Mode”.  f0 ~200-400 kHz, f/f ~0.3-1, 
r/a 0.9-1.

– A fluctuating poloidal flow at GAM 
frequency  (~20 kHz), which 
exchanges energy with mid-f 
turbulence and broadens WCM.

• CORE transport and turbulence (both ne
and Te) also promptly decrease. 

C-Mod
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DIII-D
During formation of Te and Ti
pedestal in I-mode, typically see
• PCI:  line integrated ne 

fluctuations intermediate 
between L and H-mode 
spectra, reduced~150 kHz, 
develop peak at ~300 kHz.

• Doppler Backscattering:  
Decrease in density 
fluctuations, localized near 
pedestal top.

• BES: Little change in spectra 
of ion-scale density 
fluctuations, up to 40 kHz. 

Marinoni 2014

I-mode



In at least some DIII-D I-mode discharges, small discrete events (few 
kHz) are seen on BES and ECE.   These are correlated with increases in 
D, indicating enhanced particle transport. 
• Origin of these ‘ELM-like events is unclear, since as shown above 

pedestals are far from MHD limits. 

DIII-D



Access to I-mode
• In all devices, I-mode is usually 

accessed by operating with B×B drift 
away from X-pt, which raises H-mode 
threshold. (ie ‘unfavourable’ drift).

• Heating power is gradually increased, 
while remaining below the H-mode 
threshold.
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∇
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• Since I-mode performance (W and H98) increase strongly with 
power, thresholds to enter I-mode (L-I transition) while 
avoiding H-mode (I-H transition) are key to extrapolating the 
regime.



L-I threshold increases with density

• Density dependence of P(L-I) at least linear, with a small offset on AUG.
– C-Mod observes a minimum threshold power at ne ~ 1020m-3, analogous to 

‘low ne limit’ for L-H transitions.

• Increase in P(L-I) with plasma current has also been observed on C-Mod. 
[Hubbard NF 2012]
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I-H transitions are complex, 
depend on both power and ne

• I-H transitions do not always 
occur at the maximum power 
of I-modes.

• On C-Mod, maximum density 
for sustaining I-mode 
depends on discharge 
trajectory and power, can be 
increased by fueling into hot, 
high power I-mode.  
– Often an I-H transition occurs 

when PRF decreases.
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L-I threshold increases less than 
linearly with device surface area S

• Linear fit seems too strong, 
P(L-I)/n ~ S0.5 is a better fit.
– But, there is scatter in data, 

and parameters are different 
between devices; need to 
check covariances.  

• We conservatively use 
P/ne S to extrapolate 
thresholds and power range. 

– If S dependence is weaker, 
threshold power for larger 
devices will be lower.
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Power range while remaining in 
I-mode increases strongly with field
Illustrated by C-Mod experiment which compared discharges in same 
configuration, with BT=2.8 T and 5.4 T.  
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Both C-Mod and joint 
datasets show:
• Weak (no?) scaling 

of L-I threshold P/nS
with BT.

• Strong (~linear) 
scaling of upper 
range for I-mode 
with BT.

 Results in expanded power range for I-mode at  high field.
– Consistent with differences seen among devices.
– Result is encouraging for ITER, at 5.3 T, and for application of 

I-mode to proposed higher B fusion devices*
*eg, LaBombard, Paper FIP/P7-18, Sorbom 2014.



Extrapolation and 
key issues

One of the aims of this ITPA joint activity has been to assess possible 
extrapolation of the I-mode regime to larger devices, especially ITER.  Many of 
the results, obtained with ion grad B drift away from the x-pt, are encouraging:
• I-mode is robust over a wide range of global and dimensionless parameters, 

extending to low q95, * and *; no indication of a physics limit which would 
prevent application to burning plasmas. 

• High normalized confinement (H98>1) has been achieved on AUG and C-Mod, 
though at lower B these discharges often evolve to H-mode.

• L-I threshold power:  P/ne S=const would scale to Pthresh~ 70 MW for ITER at 
ne=5x1019m-3.  Weaker scaling with S would reduce Pthresh.

• I-H threshold power:   Upper power range increases with BT.  
C-Mod results at 5.3 T indicate ITER could maintain I-mode to Ploss=350 MW 
at 1020 m-3, above the expected heating and alpha power.



Key issues and future work
• Density and pressure range:  To date I-mode has been achieved 

at moderate  and n/nG. 
– All pedestals seem well below stability limits, with headroom.  

Is  just set by heating or transition power?   How can we increase?
– C-Mod experiments show density can be increased at higher power. 

What is the limit in density and can it be robustly maintained?
• Confinement and threshold scalings. I-mode has clear 

differences to H-mode scalings, including weak power degradation 
of E, Ip dependence of P(L-I), and BT dependence of P(I-H) .  
New multimachine scalings are needed for confident extrapolation.  
– Experiments are planned soon on EAST and KSTAR.
– Experiments on JET, with larger size and intermediate BT, would be 

particularly valuable. 

• Access with favourable vs unfavourable drift.  Reversing BT
(usually along with Ip) poses operational issues in devices using NBI, 
including ITER.  Examples exist with favourable drift, should be 
explored further.
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