Conclusions of the paper

/ Naturally self Organized \
Inboard Poloidal field Null-IPN

configuration

>® A, Equilibrium Limit

K IPN /

@ egative triangularity at high @

f, can be raised by achieving
negative J shape.

No use of shaping coils

\_ /

(<6, 2 1)

Successful production of

High S, plasma

-~

o

A critical g, =3,
defines Limiter (IL) = IPN
transition

organized at high S,
by adjusting ¢

~

¢f, raised to Limit, IPN is self

/

-

\_

[PN plasma rotates
spontaneously

Rotation is self organized in

Inductive)

<

No External torque, ECRH only

steady state (~ 600 s, fully Non-

/




[I. The Device : QUEST Spherical Tokamak
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ﬁ:ully Non-inductive Plasma start-up:

configurations.

 Fast and fully non-inductive plasma current start-up has been demonstrated [ 7Zashima et. al. NF
2014] in QUEST by confined energetic electrons created by EC waves under suitable magnetic

 For this high magnetic mirror ratio (M> 2) and B,/ B,~ 0.1 has been found most suitable.
[ Such plasma is regularly obtained in both fundamental (8.2 GHz) and 2" harmonic (28 GHz) EC
\waves [Idei et. al,, IAEA-EX/P1-38 (2014)].
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[II-a: Fully non-inductive IPN plasma
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0 = Fully non-inductive IPN Plasma:
0
001 PN o2 4 /,is driven fully non-inductively (V,,,,=0),
1 S : % . ) .
4 g, = p,+1/2is computed from Shafranov’s formula for radial force balance.
0o E d With £,”> 3, natural poloidal magnetic field null appears: IPN formation
™ (consequence of equilibrium £, limit).
L 05 0 Without external 7, control, IPN-IL-IPN transition is self organized.
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[II-b: EC overdriven Ohmic plasma
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EC overdriven Ohmic

lasma:

U In absence of Ip control, contribution of Bp could not be verified.
1 In Ohmic target : Ip is kept fixed by feedback
1 With EC: Ohmic circuit recharging.

1 High HXR counts on EC application detected: Energetic electrons ~ 100 keV
1 Bz is ramped up suitably to keep the EC overdriven plasma in equilibrium.
a4, shows prompt increase in EC phase along with radial outward shift of magnetic axis.
1 A null point appeared in high field side soon after EC injection. Rin position moved up to
0.4 m.
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[[I-c: Summary of IPN plasma
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Other measurements of IPN plasma:

\

[ Visible light emission shows strike points of separatrix
on the CS—> agrees with flux loop measurements.
1 Bulk density profile (TS) : outward shift of density
centroid with IL->IPN transition, independently signaling
high f, formation.

[ Non-thermal (energetic electrons) density profile:

Qltward skewed profile, indicating outward plasma shift/
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Summary of high g IPN plasma:

4 Bz~Ip varies linearly, £, rises with Bz and IL—> IPN transition occurs

1 Plasma does not disrupt, but it self adjusts to decrease € and sustain IPN.
4 x= b/a, decreases sharply with £, and saturates at 0.6 prohibiting plasma
shape to become further oblate at higher 5,

1 During transition, plasma first becomes oblate and then this oblate plasma
moves outward as S, increased further.

4 ,[)’p* decays as /,* (NI plasma), independent of configuration and a transition
discriminates IPN and IL at /, = 25 kA

4 By keeping /, fixed, contribution of non thermal pressure (<p>,,)
component of energetic electrons in determining £, is verified.
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[V : Analytic model for IPN Equilibrium

elf organization with negative triangularit
At high £, plasma naturally self organizes itself to reduce
the k¥ (TFTR, Sabbagh et. al. PoF 1991) as observed in the
present case.
A new additional self organization feature is observed,
where self adjustment mechanisms work on the plasma
shape so as to become more negatively triangular (6 < 0).
4 This new feature overcompensates the diminution of g,
due to the reduction in .
1 A simple analytic solution of Grad-Shafranov equation is
applied to investigate such aspect | Shi POP 2005, Weening POP
2000]
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D = triangularity, E =elongation , H = diamagnetic factor.
d S, computed from model agrees well with the
measurements for critical value of IL-IPN transition.
 Model agrees with the experimental findings that,
negative o shaping is favorable for high /5, sustainment.
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» With suitable choice of E,H and D parameters in the analytic model,
equilibrium magnetic flux surfaces are computed.

» At high diamagnetic factor, high g, IPN plasma configuration is achieved.
» Flux boundaries obtained through model and magnetic measurements
closely agrees with each other.

» With the help of the simple model, magnetic surface quantities like safety
factor (g) and sheer (.5) is determined.

> In IPN configuration, a similar quantity g* = nea(1+x%)By/upl, is
determined and shows a sharp reduction during the transition phase.

» Similar reduction of edge g is also indicated from the model output.
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V : Intrinsic Rotation in IPN plasma
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o ' Homl O A characteristic feature of high §, IPN plasma is its intrinsic rotation
1o0p Showzsizcm T [cou ';f;] Shot#25541 (CIIl) without any external momentum input.
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TR s 0.3 ; el 1 Radial resolution of fiber FOVs at plasma center is ~ 8 cm and spot dia of
e ! R ml each fiber fov < 2.5 cm.
 Shewzsiezcm) V [km/s]  Showzesat{elh A Usual operating time resolution is 50 ms with minimum of 11 ms.
15{ 200 ° 406s)) 125 | [ 7 406s 4 Significant toroidal rotation (V) of order of 20 km/s is observed in IPN
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VI : Self sustained Rotation in Steadystate
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/Spontaneous rotation in IPN plasma in Steady state : \

d Spontaneous toroidal rotation in IPN plasma is demonstrated in steady state for 600 s.

(] Rotation is always in co-current direction and has maximum of ~ 20 km/s

(] Rotation profile responds to external gas fuelling and has been seen out of phase in inboard and
outboard side of the plasma.
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1 Similar rotation profile is measured in Ohmic plasma with EC injected into it.
d In pure OH plasma, plasma boundary is IL and almost negligible flow has been observed.
1 With EC injection, IL is transformed to IPN

KEIRotation reversal is observed with EC injection. /
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