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Tungsten in Fusion Reactor 

・Tungsten is candidate material for first wall 

and divertor components in fusion reactor. 

   Resistance to High-Hear-Load and High- 

Density-Particle Irradiation 

     → High melting temperature 

     → High resistance to sputtering 

     → Low hydrogen retention 

Cooling component Coating on plasma facing surface

（Thickeness:1mm for TBR） 

Blanket 

Cooling Block 

Divertor : 

Impurity exhaust 

apparatus 
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Temperature Dependence on Microstructure 

and Physical Properties of Tungsten 

●Decrease DBTT (Ductile-Brittle-Transition- Temperature) 

          Improve low temperature embrittlement. 

●Increase recrystallization  temperature. 

●Increase high temperature strength. 

Grain structure 

of W 

Physical properties 

of W 

RT 900 1300 1500 2000 500 Temperature /℃ 

UTS 

Residual stress 
Elongation 

Thermal 

conductivity 

Recovery Recrystallization Grain growth Melting 
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Recrystallization Temp. 

Strategy of material development of Tungsten 

High temperature strength 



Improvement of Mechanical Properties by 

Microstructure Control 

●Decrease DBTT 

●Increase recryst.  temp. 

Cold work 

→decrease DBTT 

→decrease recrysｔ. temp.  

●Increase high temp. 

strength 

Particle (or hole) dispersion 

→Obstacles of GB sliding and motion 

→Improve high temp. strength & 

          recrystallization behavior 

→Stability of the obstacles 

Fine Grain  

→Improve low temp. embrittlement 

→Introduce defect sink 

Alloying 

→decrease DBTT 

→increase recrysｔ. temp. 

Alloying 

Cold 

work 

Particle dispersion 

Fine grain 

Fine grain by working and 

stabilized by dispersed 

obstacles 

→Powder 

Metallurgy 

→Mechanical 

Alloying 
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Arc melting 



Examples of Microstructure Control of W 
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Coarse Grain 

Grain size 100x100μm 

 

PM W 

Full Recrystallize  ( R )  

Coarse Grain 

Grain size 100x50μm 

PM W 

Recrystallize (R) 

Layered Structure 

Layer thickness<10μm   

PM W 

Stress Relief (SR) 

MA W-TiC UFG 

Ultra fine grain  

Grain size 70-100nm 

Arc Melt W(as-cast) 

Coarse Grain 

 Grain size  ～1mm 

CVD W 

Columnar 100nm x 1μm 
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Ultra Fine Grain (<100nm) with 
Carbide precipitates on GB 

粒子 

La-doped W 

La2O3 particle dispersion 

バブ
ル 

K-doped W 

  Dope hole dispersion 
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Summary of Damage Structure Map of W  8 

[1] Williams(1983), [2] Sikka(1972), 

[3] Sikka(1973),[4] Rau (1969) 

#Void was observed above 

0.1dpa irradiation,  above 

400 ℃  up to 1300 ℃ . 

#Loop was also observed 

above 400 ℃ . Upper limit 

of loop formation could not 

be confirmed. 

#Void lattice formed after 

higher level irradiation 

(>1dpa). 
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Hasegawa, FED 89 (2014) 1568 
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Damage Structure of W and W-Re Alloys 
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Irradiated in JOYO (first neutron spectrum reactor) 

# Void lattice were observed in pure W.    ( pure W → W-1.5Re-0.05Os after 1.5dpa） 

# Void formation was drastically suppressed in W-Re and acicular precipitates were 

observed above 5%Re. 
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T. Tanno,  Mater. Trans 52 (2011) 1447 
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Summary and Prediction of Microstructural 

Development of  W 
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Background of Grain Refined W Development 
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Defect Clusters in Matrix after JOYO Irradiation 

• Irradiation response of the advanced W 

alloys were almost the same as pure W. 

• Matrix condition for defect clustering were 

considered to be similar between these 

specimens. 

Irradiation 

conditions 
Pure W 

La-doped 

W 

K-doped  

W 

531oC, 0.44dpa 0.017 0.014 0.011 

583oC, 0.47dpa 0.056 0.044 0.047 

756oC, 0.42dpa 0.054 0.072 0.073 

Calculate void swelling (%) 
Fukuda, JNM 442 (2013) S273-S276 
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• Name of fabricated alloys 

• Pure W 

• W–1%Re 

• K–doped W 

• W–3%Re 

• K–doped W–3%Re 

• La–doped W–3%Re 

• Pure-W 

• K–doped W 

• K–doped W–3%Re 

C 

[ppm] 

O 

[ppm] 

N 

[ppm] 

Re 

[%] 

K 

[ppm] 

Al 

[ppm] 

Si 

[ppm] 

Pure W 10 < 10 < 10 – < 5 < 2 < 5 

W-1%Re 10 < 10 < 10 0.98 < 5 < 2 < 5 

K –doped W 10 < 10 < 10 – 30 15 17 

• Relative density 

・Pure W :       99.0% 

・W–1%Re:     99.1% 

・K–doped W:  99.1% 

• Example of impurities 

ρ0：19.1 g/cm3 

①PM and hot rolled 

plates 5mmｔ or 7mmt  

②PM and swaged rod 
20mmφ,10mmφ  

・ Pure W 13mmt          

Fabricated W and W-alloys in LHD Project 
15 
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By A.L.M.T. Corp. 

① 

② 
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Grain Structure (As received)  
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• Hot rolled structure 

    Layered structure 

As received ： 

 Heat treated at 900℃ for 20min 



Recrystallized Behavior of Rolled Plate 17 17 

Dept.  Quantum Science & Energy Engineering, Tohoku University 

0

20

40

60

80

100

120

140

160

180

800 1200 1600 2000

Pure W

K-doped W

W-3%Re

K-doped W-3%Re

A
v

er
ag

e 
g
ra

in
 s

iz
e,

 m
m

Heat treatment temperature, oC

Pave=(PA PB PC)1/3

P: number of grain boundary intersections 

per unit length of test line 

R.D.

PB

PA

PC



Temperature Dependence of Strength 
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• Strength increase by K-dope （at RT: 64% up, 1500℃: 36% up) 

• Strength increase above 900℃ by Re addition to K-dope W. 

 

K-doping 

・Fine grain size 

・Obstacles for dislocation  and 

GB sliding, and recrystallization 

Re addition 

Solute Re 

・Solution softening（<900℃） 

・Solution hardening（>900℃） 
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Anisotropic Tensile Strength 
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・Anisotropy was observed in the 

temperature range of R.T. - 500 oC. 
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Strain Rate and Temperature Dependence 

of Strength 

R.D. 

SS-J (R.D.//T.D) 

Fukuda, to be presented in TOFE (2014) 

Time dependent mechanical properties 



Strain Rate Dependence of Tensile Behavior 
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• DBTT of tensile deformation is decreased 

about 100 ℃  by K-dope process. 

R.D. 

SS-J (R.D.//T.D) 

Fukuda, to be presented in TOFE (2014) 

Time dependent mechanical properties 



Thermal Diffusivity 

・TD of poly crystal is lower than TD of single crystal, but difference is small. 

・Anisotropy of TD of pure W(poly-X) is not observed. 
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Effects of grain boundary and microstructure anisotropy. 



Thermal Diffusivity of W and W alloys 
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Thermal Conductivity of W and W alloys 
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Thermo-mechanical Analysis 
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now in progress. 
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20 MW/m2  10 s 

Fukuda, to be presented in TOFE (2014) 



Recrystallization 

 • In the case of pure W, the depth of the recrystallized area was ~8 mm from 

the top surface. 

• The depth of the recrystallized area were 6 and 3 mm from the top surface for 

K-doped W and K-doped W-3%Re, respectively. 

        →Increase in recrystallization temperature by K and Re dope decreased 

recrystallized depth. 

Pure W K-doped W K-doped W-3%Re

20 MW/m2 

10 s 

>1100 oC >1300 oC >1800 oC 
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Recrystallization 

 • The threshold temperature of the recrystallization was estimated as ~11, ~12, 

and 15 MW/m2 for pure W, K-doped W, and K-doped W-3%Re, respectively. 

• The recrystallization depth was linearly increased with increasing heat load.  

  Thermal conductivity decrement  

 

Recrystallization temperature increment 
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# Microstructural data of neutron irradiated Tungsten (W) obtained by neutron 

irradiated W up to 1.5dpa irradiation in the temperature range of 400-800C were 

compiled quantitatively. Nucleation and growth process of these defects were clarified 

and a qualitative prediction of the damage structure development and hardening of W 

in fusion reactor environments were made taking into account the solid transmutation 

effects for the first time.  

 

# Powder metallurgically processed pure W and W-alloys were fabricated to improve 

mechanical properties, recrystallization behavior and radiation resistance of W by 

grain refining and alloying processes.  

 

# Mechanical property and thermal property of the alloys were obtained.  

Improvement of strength, low temperature embrittlement and recrystallization 

behavior of the W-alloys compared to pure W were demonstrated.  Neutron irradiation 

experiment of these materials using a fission reactor (HFIR) will start during 2014. 

 

# Trade-off between the thermal conductivity and mechanical property, embrittlement 

resistance by the structural control must be considered quantitatively to design 

diverter cooling component. The thermo-mechanical analysis of the diverter block 

made of the alloys considering thermal diffusivity and recrystallized temperature were 

performed by finite element analysis.  
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Thank you for your attention. 
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