N, S Pu~ /‘@\
hﬂ?‘;g b \q-;rﬁulénce (J

UUUUUUUUUUUUUUUU

Dynamic method to study
turbulence and turbulence
transport

S. Inagaki, K. Idal, S.-I. Itoh, K. Itoh?, T. Tokuzawa?, N. Tamura?, S. Kubo?,

T. Shimozuma?, K. Tanaka?, H. Tsuchiya?!, Y. Nagayama?, T. Kobayashi?, N. Kasuya,
M. Sasaki, A. Fujisawa, Y. Kosuga3, K. Kamiya?, H. Yamada?!, A. Komori! and LHD
experiment group?

Research Institute for Applied Mechanics, Kyushu University

INational Institute for Fusion Science

?Interdisciplinary Graduate School of Engineering Sciences, Kyushu University
3Institute for Advanced Study, Kyushu University

YJapan Atomic Energy Agency



Revisiting heat pulse propagation analysis
Discovery of the New Transport Relation on LHD

Conventional method has
serious difficulty
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Contents :

Method to study turbulence transport

- Assessment of conventional method (What is y;,,?).

- A simplified new approach to understand the transport
with multiple-valued flux (hysteresis, barrier formation)

Method to observe multi-scale couplings of turbulence

- Observation of coupling of micro-fluctuations at distant
locations



Exp. Set-up and Conditional Averaging
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Periodic temporal evolution of
no evidence of high-energy tail  sjongals are precisely extracted.



Precise spatiotemporal structure of heat pulse -

Conditional averaging technique is very powerful tool

B Diffusive Nature Experiment
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The conventional y,,, is flawed since it neglects two time
scales in transient response.



Higher harmonics in the heat pulse propagation’

The two-time scale feature should appear in the response

of extremely-higher harmonics
(Conditional Averaged)
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More-than 10th harmonics are observed
even far away from source




Features of Higher harmonics

Weaker decay in amplitude
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Higher harmonics in the heat pulse propagation

Fundamental mode can not catch
the response around turn-on/off
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Higher harmonics should be more routinely checked to clarify the
transport with multiple-valued flux



Heat pulse propagation during ITB transition

- ECH modulation experiment near the ITB transition
- The ITB foot shifts back and forth during ECH modulation
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Delayed rises and simultaneous drops are observed



Mixed time-scale phenomena

- Three or four dynamics combined

- Fast propagation, Displacement of ITB front,
Global (non-local) response in VT,

(Conditional Averaged)
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Method to observe multi-scale
couplings of turbulence

Non-locality of turbulence is one of the important
keys to understand the multiple-valued flux
(hysteresis and two time-scale response)
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Cross Bi-Coherence of Fluctuations at Distant Locations
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Non-Local Micro-Global Coupling :

- Summed bi-coherence shows a peak at 2.75 kHz

- The summed bi-coherence converges to 0.2
(~1/10 of the local summed bi-coherence)
150 kHz < f, < 250 kHz atp O 88
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Global fluctuation(2.75 kHz) at p, = 0.63 non-locally couples
with micro-fluctuations (150-250 kHz) at p; = 0.88

4

2.75kHz

sz

. 17kHz

\\




Tri-Coherence analysis is just started
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Summary T @&
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This study established methods for analyzing (i) heat transport

dynamics beyond Fick’s law and (ii) ‘'non-local’ coupling of micro-
fluctuations.

- Conditional averaging technique is very useful to
understand the transport with multiple-valued flux

Hysteresis in transport = two-time scale response
=Slow decay and fast propagation of the higher harmonics

|Identification of three or four time-scale responses in the ITB
plasma

- Non-local bi-/tri-spectrum analysis allows us to study the
non-local coupling between micro-fluctuations

These results are beneficial for understanding of the
plasma dynamics in future fusion reactors.
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Non-Local Micro-Micro Coupling
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