

Dynamic method to study turbulence and turbulence transport

S. Inagaki, K. Ida¹, S.-I. Itoh, K. Itoh¹, T. Tokuzawa¹, N. Tamura¹, S. Kubo¹, T. Shimozuma¹, K. Tanaka¹, H. Tsuchiya¹, Y. Nagayama¹, T. Kobayashi², N. Kasuya, M. Sasaki, A. Fujisawa, Y. Kosuga³, K. Kamiya⁴, H. Yamada¹, A. Komori¹ and LHD experiment group¹

Research Institute for Applied Mechanics, Kyushu University ¹National Institute for Fusion Science ²Interdisciplinary Graduate School of Engineering Sciences, Kyushu University ³Institute for Advanced Study, Kyushu University ⁴Japan Atomic Energy Agency

Revisiting heat pulse propagation analysis

Discovery of the New Transport Relation on LHD

Conventional Approach

Conventional method has serious difficulty

Single-Valued Function

One time-scale

Contents

Method to study turbulence transport

- Assessment of conventional method (What is χ_{hp} ?).
- A simplified new approach to understand the transport with multiple-valued flux (hysteresis, barrier formation)

Method to observe multi-scale couplings of turbulence

- Observation of coupling of micro-fluctuations at distant locations

Exp. Set-up and Conditional Averaging

- Target plasma (NBI+MECH)
- Modulations of T_e, ∇T_e and fluctuation are observed simultaneously

Precise spatiotemporal structure of heat pulse ⁵

Conditional averaging technique is very powerful tool

The conventional χ_{hp} is flawed since it neglects two time scales in transient response.

Higher harmonics in the heat pulse propagation⁶

The two-time scale feature should appear in the response of extremely-higher harmonics

Features of Higher harmonics

Higher harmonics in the heat pulse propagation[®]

Higher harmonics should be more routinely checked to clarify the transport with multiple-valued flux

Heat pulse propagation during ITB transition

- ECH modulation experiment near the ITB transition
- The ITB foot shifts back and forth during ECH modulation

Delayed rises and simultaneous drops are observed

Mixed time-scale phenomena

- Fast propagation, Displacement of ITB front, Global (non-local) response in ∇T_e

ITB transition is involved with multi-mechanisms

(Conditional Averaged)

Method to observe multi-scale couplings of turbulence

Non-locality of turbulence is one of the important keys to understand the multiple-valued flux (hysteresis and two time-scale response)

Cross Bi-Coherence of Fluctuations at Distant Location¹²

Non-Local Micro-Global Coupling

- Summed bi-coherence shows a peak at 2.75 kHz
- The summed bi-coherence converges to 0.2 (~1/10 of the local summed bi-coherence)

150 kHz < f₁ < 250 kHz at **ρ = 0.88**

Global fluctuation(2.75 kHz) at ρ_A = 0.63 non-locally couples with micro-fluctuations (150-250 kHz) at ρ_B = 0.88

Tri-Coherence analysis is just started

Summary

This study established methods for analyzing (i) heat transport dynamics beyond Fick's law and (ii) 'non-local' coupling of microfluctuations.

- Conditional averaging technique is very useful to understand the transport with multiple-valued flux

Hysteresis in transport = two-time scale response =Slow decay and fast propagation of the higher harmonics

Identification of three or four time-scale responses in the ITB plasma

- Non-local bi-/tri-spectrum analysis allows us to study the non-local coupling between micro-fluctuations

These results are beneficial for understanding of the plasma dynamics in future fusion reactors.

Non-Local Micro-Micro Coupling

