EU DEMO Design Point Studies

R. Kemp¹, D. J. Ward¹, G. Federici², R. Wenninger^{2,3} and J. Morris¹

¹CCFE, Culham Science Centre, Oxfordshire OX14 3DB, United Kingdom ²EFDA PPPT, Boltzmannstr.2, Garching 85748 (Germany) ³IPP, Boltzmannstr.2, Garching 85748 (Germany)

CCFE is the fusion research arm of the **United Kingdom Atomic Energy Authority.** This work was part-funded by the RCUK Energy Programme [grant number EP/I501045] and the European Union's Horizon 2020 research and innovation programme.

EU DEMO Design Point Studies

- Conceptual power plant design
 - Systems codes
- What is DEMO?
- Design point development
- Design choices
 - Pulsed vs steady-state
 - Aspect ratio
- Uncertainties
- Further steps

Slide 1/15

Systems codes

Used to develop many conceptual designs with a range of materials and technology assumptions

Every major plant system is modelled:

- •Site and buildings
- •Heat and power systems
- •Magnets (TF and PF)
- Shield and vessel
- Blanket
- •Divertor
- •Plasma
 - •Fusion power
 - •Confinement
 - •Pressure and density limit
 - Radiation
 - Bootstrap current
 - •Etc. etc.

Used to determine power plant costs and ultimately cost of electricity. Used for conceptual design and economic studies. EU systems studies use PROCESS, based at CCFE¹.

¹Kovari et al, *PROCESS: a systems code for fusion power plants – part 1: physics*, accepted to FED 2014

25th IAEA Fusion Energy Conference / October 2014 / St Petersberg

Slide 2/15

Systems codes

Fast calculations

- 0D models
- •Simplified generomak physics for many systems simultaneously
- •Use guidelines, correlations
- •Gives overall operational design point the major plant parameters

1D/2D modelsEquilibrium, current driveAssume profiles, boundariesCalibrate design point

Detailed models: 1D/2D/3D, engineering analysis
•E.g. MHD, SoL physics, kinetic studies
•Calculate transport (core and edge), evolve profiles self-consistently
•Confirm and refine design point

Slow complex calculations

25th IAEA Fusion Energy Conference / October 2014 / St Petersberg

Slide 3/15

What is **DEMO**?

- Ultimate goal of fusion research to supply electricity
 - Economically
 - Sustainably
 - Safely
- At some point, we must demonstrate that fusion is a credible energy source. This is what DEMO is intended to do.
- Targets:

Energy

- Production of significant electrical output for significant time
- Tritium self-sufficiency
- Operation of all supporting/enabling technologies for commercial fusion power, bearing in mind: safety, reliability, availability, maintainability, inspectability
- Does not have to be technologically or physically optimised: e.g. target availability of 30%, not cheapest electricity

Batistoni et al, Report of the ad hoc group on DEMO activities, CCE-FU 49/6.7, 2010

25th IAEA Fusion Energy Conference / October 2014 / St Petersberg

EU Roadmap for DEMO

25th IAEA Fusion Energy Conference / October 2014 / St Petersberg

Slide 5/15

What is **DEMO**?

Exploring operating space

Federici et al, Overview of EU DEMO design and R&D activities, FED 89, 2014

25th IAEA Fusion Energy Conference / October 2014 / St Petersberg

Energy

What is **DEMO**?

- EU view: ITER should demonstrate
 - Robust burning plasma physics regimes
 - Conventional divertor solution
 - Validation of breeding blankets
- "Early DEMO" with well-established technology and regimes of operation (*i.e.* inductive)
- Modest but equal extrapolation in all areas (*i.e.* no magic solutions to technical problems)
- Based on current materials, technology, and physics knowledge

DEMO targets / limits

Values are inputs to systems codes: either targets or limits (except recirculating power)

Divertor power limit achieved through impurity doping and high radiation fraction (other solutions may be available)

Value	DEMO1	Notes
Physics		
$eta_{\sf N}$ limit	3.0	Total β_{N} , performance usually limited by <i>H</i> -factor instead
H ₉₈ -factor limit	1.1	Radiation-corrected (uncorrected 'experimental' factor is ~0.1 lower)
$q_{\scriptscriptstyle 0}$ / $q_{\scriptscriptstyle 95}$	1.0 / 3.0	
<n<sub>line>/n_G</n<sub>	1.2	Assuming <i>n</i> _G is a pedestal limit; tGLF predictive transport simulations indicate density peaking
Operation	Pulsed / 2 hr	
Heating and current drive		
Power (MW)	50	DEMO1 power principally for burn control; extra probably required to reach burn
E _{beam} (keV)	1000	Higher energy gives higher $\gamma_{\rm CD}$
η_{WP}	0.4	Wallplug efficiency, $\eta_{WP} = P_{inj}/P_{electrical}$
Divertor		
<i>P</i> _{div} / <i>R</i> ₀ (MW m ⁻¹)	17.0	DEMO1 based on ITER values
Balance of plant		
P _{recirc} (MW)	300	Principally current drive and coolant pumping
η_{th}	37%	~150MW coolant pumping power gives overall plant efficiency of ~24%
P _{e,net} (MW)	500	Ultimate electrical output target

25th IAEA Fusion Energy Conference / October 2014 / St Petersberg

Slide 8/15

Design point development

Giruzzi et al, Modelling of pulsed and steady-state DEMO scenarios, TH/P1-14

25th IAEA Fusion Energy Conference / October 2014 / St Petersberg

Energy

Slide 9/15

Design choices – pulsed vs steady-state

- Increasing pulse length requires significant current drive power
 - Increasing recirculating power reduces net electrical power or requires higher fusion power
 - Increased injected power and fusion power means higher power density and greater loads on divertor
- Pulsed is "easy option"
 - Plenty of data, but difficult to control current profile
 - Cyclic stresses on components
 - Energy storage required?
- Steady-state preferred for power plant but requires high $f_{\rm BS}$ scenarios, efficient and reliable CD systems...
- "Early DEMO" is pulsed, but EU also exploring steady-state machine

25th IAEA Fusion Energy Conference / October 2014 / St Petersberg

Slide 10/15

Design choices – aspect ratio

- Scan of varying aspect ratios with scenario and engineering analysis
 - (Minimised major radius)
 - Transport modelling, access requirements, engineering feasibility
 - Cost estimates: lower *A* has lower field cheaper magnets?
 - Trade-offs / limitations at each design point
 - *E.g.* Low aspect ratio size set by pulse length; large aspect ratio size by confinement

Design choices – aspect ratio

- Magnets are significant fraction of cost (~30%)
 - Reducing magnetic field can reduce costs
 - But other considerations including cost of larger VV/shield/blankets, increased RH costs for larger components...

Uncertainties

- Major uncertainties in extrapolation of physics
 Particularly treatment of radiation¹
- Choice of scenario uncertain (diagnostics and control, H&CD, stability of high radiation fraction...)
- Effects of TF ripple on plasma/fast particle confinement force larger coils – effects on access/RH/etc.
 - What is appropriate value?
- Divertor protection

¹Ward et al, *International Systems Code Benchmark for DEMO*, 2nd IAEA DEMO Programme Workshop, Vienna, Dec. 2013

25th IAEA Fusion Energy Conference / October 2014 / St Petersberg

Further steps

- Incorporation of uncertainties into PROCESS systems code to assess robustness of operating point
- Development of DEMO Physics Basis and DEMO operating scenario to ensure best chance of success
- Further development of DEMO workflow to pass plant operating points through successively more detailed analysis in integrated way.

Summary

- EU DEMO operating points based on "near-term" physics and technology
 - Results in a 'conservative', low power-density design
 - DEMO not intended to be a commercial power plant but proof of concept
- Established workflow for evaluation of operating points from many angles and assessing conflicts/issues not captured by systems code
- Evaluation of areas where we need to know more; where uncertainties have greatest impact on performance
- Comprehensive scoping of operating space taking place to establish DEMO operating point "most likely to succeed"

