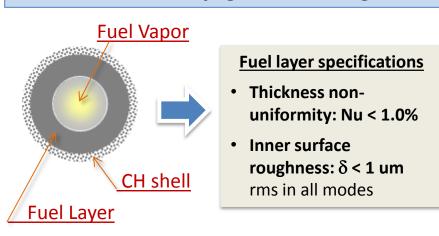
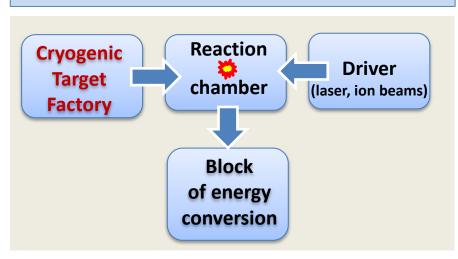
CONCEPTION of a CRYOGENIC TARGET FACTORY for IFE

Elena Koresheva, Lebedev Phys. Inst. of RAS

Irina Aleksandrova, Eugenie Koshelev, Andrei Nikitenko,


Boris Kuteev,

Vladimir Nikolaev, Igor Osipov


Cryogenic Target Factory is one of the main building blocks of IFE reactor

Principle of CTF operation: targets must be free-standing at each production step

Direct-drive Cryogenic Fuel Target

Main building blocks of IFE reactor

Cryogenic Target Factory Specifications

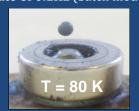
- 1. Free-standing targets mass-production:
 - ~ 500000 targets/day (upon the average)
- **2. High rep-rate target delivery:** targets must be delivered to IFE chamber at a rate of 1-10 Hz (laser or heavy ion drivers) or 0.1 Hz (Z-pinch)
- 3. Survivability of a fuel core during target delivery:
- Layers with inherent survival features
- Multiple target protection methods
- **4. On-line target characterization in IFE chamber:** Quality & Trajectory
- 5. Assembly of different elements:
- Target elements → hohlraum target, FI target
- Target-&-sabot
- Layering module-&-injector
- 6. Tritium inventory minimization

The Lebedev Physical Institute (LPI) propose the conception of a Cryogenic Target Factory (CTF) for IFE

The CTF is based on the approaches proposed & examined at LPI [1]:

- (a) Free-standing targets (FST) technology for a high rep-rate & cost-effective operation of the CTF [2]
- (b) Magnetic levitation (maglev) transport systems for almost frictionless motion of the cryogenic targets at their handling [3]
- (c) Fourier holography for *on-line* characterization & tracking of a flying target [4]

The POP and computer experiments have proved the interaction efficiency of the proposed approaches


^{2.} Aleksandrova I.V. et al. *An efficient method of fuel ice formation in moving free standing ICF / IFE targets*. J.Phys. D: Appl.Phys. **37**, 2004

FST -layering: freestanding cryo target

Targets injection with the rate of 0.1Hz (batch mode)

HTSC coated CH shell levitating above magnet

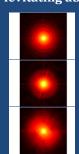


Image Fourier transforms of the shells with different imperfections

^{3.} Aleksandrova I.V. et al. *HTSC maglev systems for IFE target transport applications*. J. Russian Laser Research **35**(2), 2014

^{4.} Koresheva E.R. et al. Possible approaches to fast quality control of IFE targets. Nuclear Fus. 46, 2006

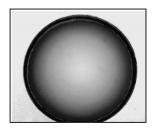
CTF prototype created and tested at LPI for targets under 2 mm-diam: CURRENT PARAMETERS

- Formation of cryogenic layers inside moving free-standing CH shells of \varnothing 0.8-1.8mm
- Formation of isotropic ultra-fine cryogenic layers to meet the requirements of implosion physics:
- Enhance mechanical strength and thermal stability which is of critical importance for target fabrication, acceleration and injection
- Avoid instabilities caused by grain-affected shock velocity variations

CH shell Ø 1.5 mm;

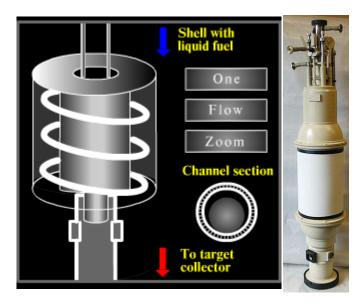
50 um-thick cryo layer
Cryo layer components:
97%D2 + 3%Ne
CH shell is covered by outer layer from Pt/Pd
(200 Å)

- Tritium inventory minimization in the CTF:
- Minimal spatial scale due to close packing of free-standing targets
- Minimal layering time: $t_f < 15$ sec (conventional production methods: $t_f \sim 24$ hrs)
- Minimal transport time between the basic units of the CTF due to realization of injection transport process
- Rep-rate mode of the CTF operation: the target production rate is about v = 0.1 Hz
- **FST layering is the most inexpensive technology** (< 30 cents per 1 target)


BACKGROUND:

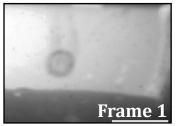
Cryogenic layering in the moving free-standing targets (FST technology)

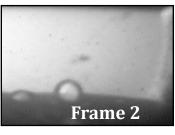
Initial cryogenic target with liquid D₂ fuel



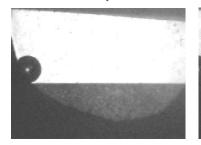
Finished cryogenic target with solid D₂ layer

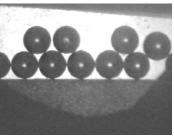
CH shell: \varnothing 1.23 mm Layer: 41 um, D₂+20% Ne Nu < 2%, δ < 0.5 um


FST-layering module general view & physical layout


Cryogenic experimentI.Osipov, A.Kupriyashin, E.Koshelev

Cryogenic target injection into the test chamber at 5 K




Target in free-fall

Target landing

Rep-rated injection of 1 mm targets at 5 K, f = 0.1Hz (batch mode)

t = 0 t = 100 s

The FST technology is unique and there is not alternative of that kind

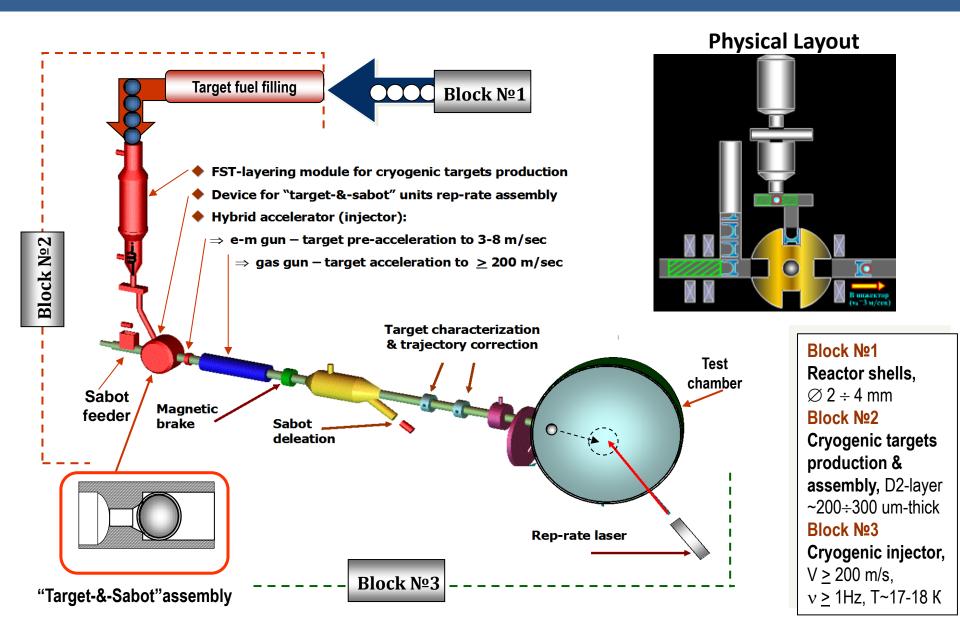
FST principle:

- Targets are moving and free-standing (unmounted)
- Target injection between the basic units of the CTF
- Time & space minimization for all production steps

FST result:

A batch mode is applied, and high cooling rates are maintained (1-50 K/s) to form isotropic ultra-fine solid layers inside free-rolling targets

FST status:

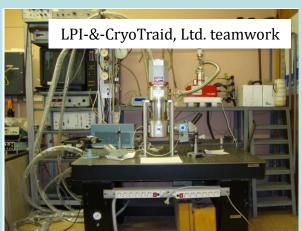

FST technology and facilities created on its base are protected by the RF Patent and 3 Invention Certificates

NEXT STEP: FST technology demonstration for cryogenic targets of a reactor scale with rep-rate production up to ~1 Hz and more

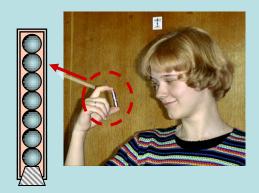
Reactor-scale targets: CH shells $\varnothing 2-4$ mm, layer thickness $\sim 200-300$ um

CRYOGENIC TARGET FACTORY: Concept for continuous production & high-rep-rate target transport to IFE reactor

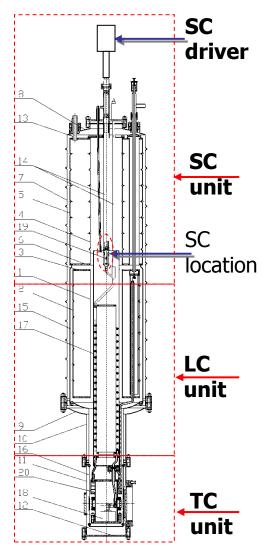
Basic elements of CTF have been tested by LPI on the prototypical models. That allows risk minimization at the CTF construction & start-up.


Cryogenic targets: FST method for fuel layering inside free-rolling targets

Cryogenic target characterization: 100-projections visual-light tomograph with 1 um space-resolution


Startup of the FST facility at the LPI in 1999

Maglev transport systems: Facility for research in the area of HTSC levitation at T \leq 18 K

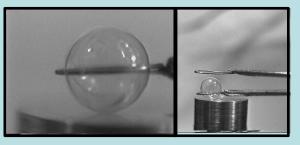

Fill System:Filling of CH shells with gaseous fuel up to 1000 atm at 300K

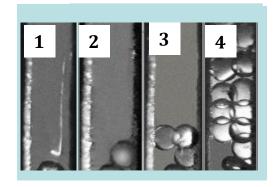
Handheld Target Container for fuel filled shells transport at 300 K from the fill system to the FST-layering module

FST-layering module (1 Hz operation in a batch mode) designed by LPI for EU project "HiPER" can serve as a prototype for CTF

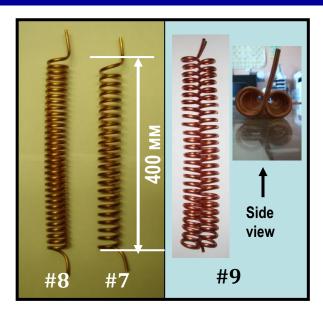
☐ Drawing of the FST-layering module for HiPER project

☐ Mock-ups for testing the operational parameters


A set of the FST-layering channels (LC)


Optical test chamber (TC)

Shell container (SC)



Positioning device with the ring manipulator

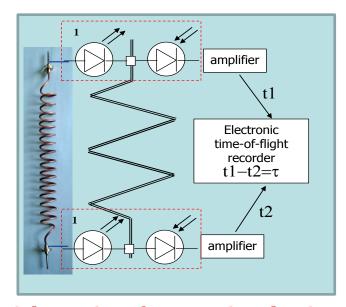
Target collector: demonstration of targets gravity injection

Recent results: a double-spiral FST-layering channel (LC) is the best prospect for reactor targets production

Mockups of the spiral LC

#7, #8 \Rightarrow single-spiral LC (**SSLC**), #9 \Rightarrow double-spiral LC (**DSLC**), Cupper tube OD=38mm

HiPER target


CH shell: \emptyset 2 mm x 3 um DT-layer: 211 um-thick

CH shells of Ø 2mm

for mockups testing. Supplied by the STFC, UK

Schematics of measuring the time

of target movement inside the LC 1 – optronic pair made from IR-diodes

<u>Time of target movement inside the mockups</u>

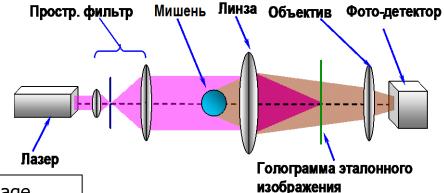
(testing results at 300K, data averaged for 10 shots)

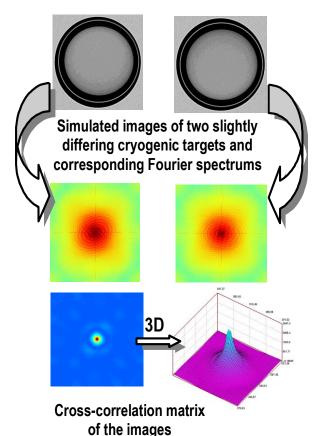
SSLC

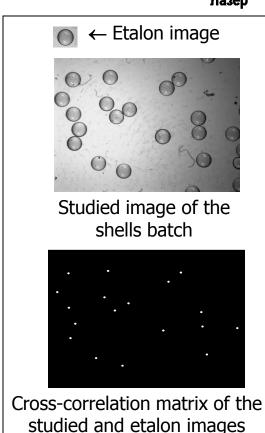
#7: t_m = 9.8 s #8: t_m = 16.4 s

DSLC

#9: t_m = 23.5 s


<u>Calculations</u>


FST-layering time for HiPER targets

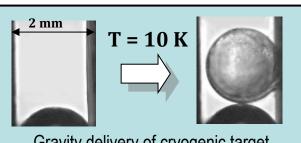

 $t_1 \sim 10$ -to- 15 s

Fourier holography of image recognition is a promising way for on-line characterization of a flying target (IAEA TC # 13871)

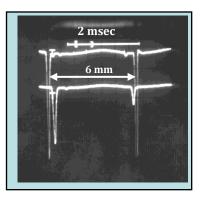
- ☐ The recognition signal is maximal in the case of good conformity between the real & etalon images
- ☐ The operation rate of such a scheme is several usec

Computer experiments have shown that this approach allow

- Recognition of the target imperfections in both low- & high- harmonics
- Quality control of both a single target & a target batch
- Simultaneous control of an injected target quality, its velocity & trajectory

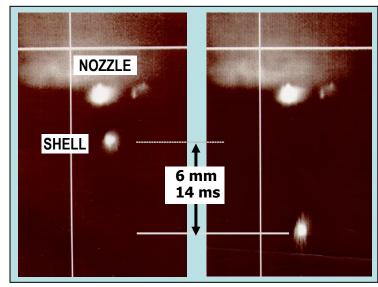

Target injection under gravity: prototyping a gravity assembly of "Target-&-Sabot" (T<18K) and refining a trajectory control of flying shells

Gravity injector test stend


developed by the Lebedev Physical Institute and the Rutherford Appleton Lab. (1989-1991)

Prototyping a gravity assembly of "Target-&-Sabot" at T = 10 K

Gravity delivery of cryogenic target from the FST-layering channel into a cylindrical cavity

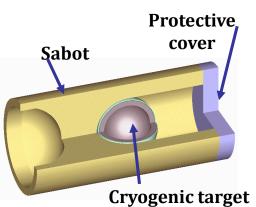

Double-beam oscilloscope data of the injected shells

Prototype of a gravity injectorintegrated with
the FST- layering channel

High-speed video filming

of injected shell into the test chamber; Video-camera KODAK ECTAPRO 1000 IMAGER

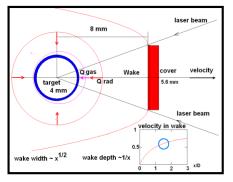
Refining on-line control of trajectory of the flying shells


Data for 50 shots

(for CH shells of $\varnothing \sim 1$ mm)

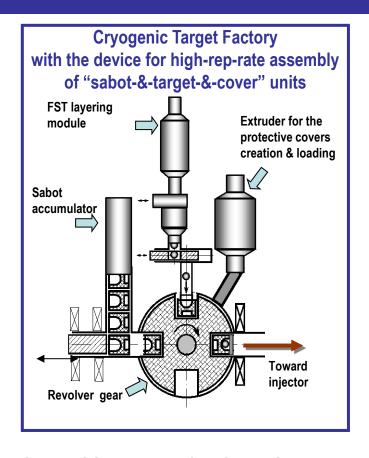
- 1. Trajectory angular spread ≤ 3 mrad
- 2. Injection velocity $0.43 \div 0.55 \text{ m/s}$

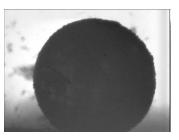
RESUME on the MULTIPLE TARGET PROTECTION METHODS


Outer protective cryogenic layer, reflective coating, protective cover, sabot

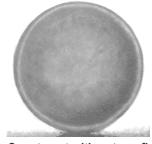
TARGET ACCELERATION INSIDE INJECTOR

Special sabot is used for


- transfer a motion pulse onto a target
- target protecting from g- & heat- load arising during target acceleration



TARGET FLIGHT INSIDE REACTION CHAMBER


PROTECTIVE COVER forms a wake area in the fill gas to protect target from the head wind and to avoid convective heating.

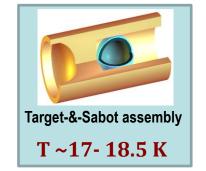
Protective cover material: solid D2, Ne or Xe

1. Target with outer protective cryogenic layer

2. Cryo target with outer reflective layer from Pt/Pd (200 Å-thick)

TARGET ACCELERATION & FLIGHT

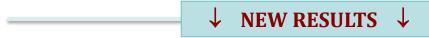
- **1. Outer protective cryogenic layer:** Technology of deposition on the shell the outer layer from solid D2, Xe or Ne to protect target from overheat during its flight (technology developed at LPI)
- 2. Outer reflecting metal layer (technology developed at LPI)


Acceleration stage ⇒ after FST layering, the targets are loaded into sabots. Resent results: sabot material study to enhance the efficiency of the electromagnetic (e-m) injector

- (1) **SFM sabot:** Bulk **S**oft **F**erro **M**agnetic (like annealed iron)
- Numerical study:

SFM sabot can be used at T< 20 K

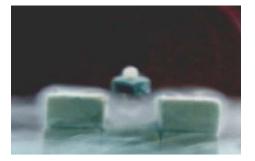
• Successful experiments:

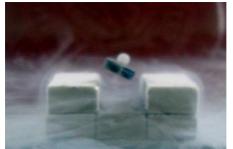

SFM sabot acceleration were carried out at T = 5-to-80 K

- (2) MD sabot: Magneto-dielectric (soft ferromagnetic particles distributed over a polymer matrix)
- Numerical simulations:

MD sabot can be used more effectively than SFM sabot

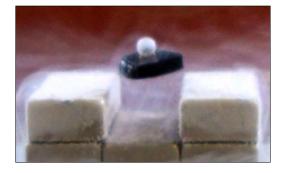
Experimentally, the next R&D steps will be required

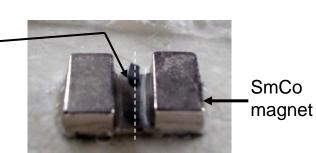

- (3) HTSC or maglev sabot: High-Temperature Superconductor
- <u>LPI has proposed</u>
 using HTSC materials for development of maglev technology for target handling & transfer
- <u>LPI made</u> HTSC ceramics YBa₂Cu₃O_{7-X} (Tc~91K, Bc~5.7T at 0K) using method of solid phase reactions
- <u>POP experiments:</u> stable levitation & transfer of different HTSC samples at T = 6-to-80 K


Set #1: experiments at T ~ 80 K (LN₂) have demonstrated stable levitation of the HTSC samples of different geometry

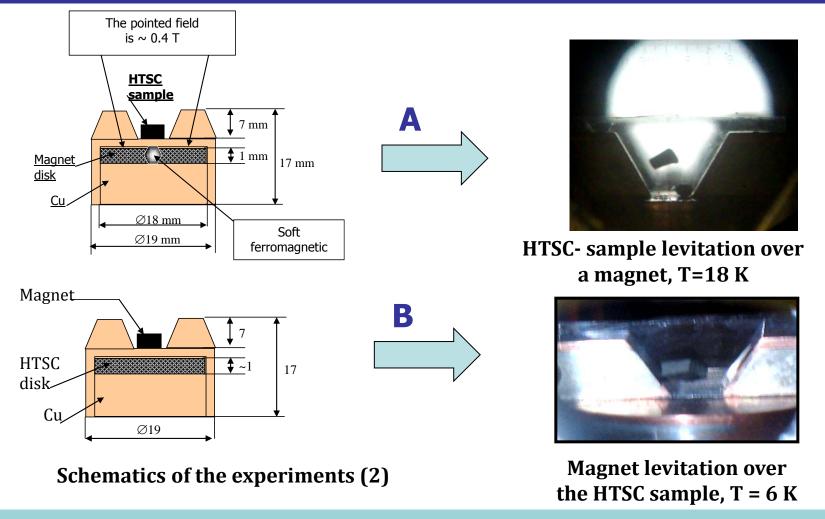
HTSC sample

☐ Levitation of the HTSC platform with CH shell on it


HTSC sample size: 8 x 8 x 6 mm; Magnet: SmCo, B = 0.4 T CH shell size: Ø 2 mm



☐ HTSC sample aligns with the line of minimal magnetic induction
Sample size: 8 x 2 x 2 mm; Magnet: SmCo, B = 0.4 T



HTSC samples made at LPI

material: superconducting ceramics YBa₂Cu₃O_{7-X}

Set #2: experiments at T = 6-to-18 K have confirmed the possibility of using HTSC as a driving body for cryogenic target transfer

- Comparative experiments demonstrated stable levitation of the HTSC samples in the range of 80 -to- 6 K
- Resume: for reduction in cost, model experiments can be carried out at T ~ 80K (liquid nitrogen temperatures)

POP experiments (~ 80K): non-contact positioning & frictionless transport of the HTSC projectile inside e-m injector

□ Ordered motion of HTSC sample with CH shell over the PMG

PMG:

4 permanent magnets

Magnet:

SrBa ferrite, 0.18 T

Screw insert:

soft ferromagnetic

ARMCO

CH shell:

2-mm-diam

■ Stable levitation of the YBaCuO sample in the field of permanent magnet

Magnet (commercial):

Ferrite F8

B~0.16 T

OD 15 mm

ID 9 mm

5-mm-thick

Sample (made at LPI):

YBaCuO ceramics

Size ~ 2mm

Maglev braking of lateral motion of the HTSC projectile

The PMG made from a soft ferromagnetic plate mounted onto the permanent magnet from NdFeB (B = 0.4 T)

HTSC pellet Ø 12.4 mm

HTSC coated CH shell Ø 2mm

Stable levitation of the CH shell with the outer YBaCuO layer

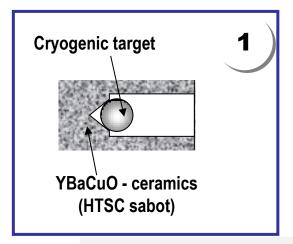
Magnet: ferrite F8,

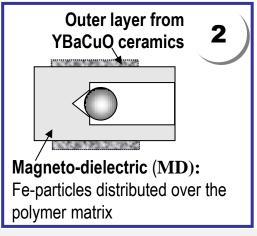
B~0.2 T,

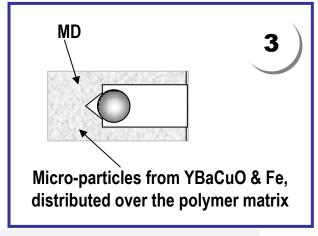
OD 14-mm,

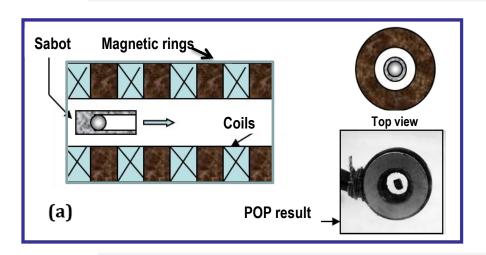
4-mm-thick

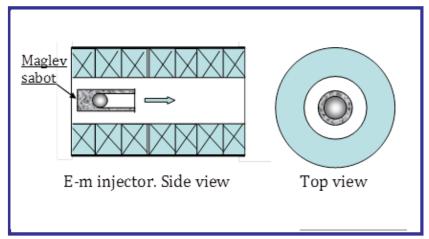
CH shell:


2-mm-diam


YBaCuO layer:


~10-um-thick


Different designs of a maglev sabot based on using superconducting ceramics YBaCuO



Sabots for almost frictionless motion inside the electromagnetic injector, which enhance the operating efficiency of the maglev accelerator

We are going to realize the CTF concept based on FST in the next generation project

☐ Project Title:

FST transmission line for IFE: high-rep-rate target fabrication, injection and tracking

☐ Project goal:

- Refining the FST- technology for producing the reactor scale targets (Ø=2-4 mm, cryogenic layer W=200-300um)
- Creation of FST transmission line for IFE and demonstration of its 1-Hz operation

☐ Presented:

40th International conf. on Plasma Physics & Controlled Fusion (Feb. 10–14, 2014, Russia)

by I.V.Aleksandrova, E.R.Koresheva, E.L.Koshelev, B.V.Kuteev, A.I.Nikitenko, V.N.Nikolaev, I.E.Osipov

☐ The project is under consideration

Project participants at 40th International conference on Plasma Physics and Controlled Fusion, February 10–14, 2014 (Zvenigorod, Russia)

Summary results for the activity of Russian Federation* in the area of "Cryogenic Targets Factory for IFE"

*/Lebedev Physical Institute of Russian Academy of Sciences

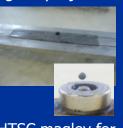
in collaboration with other Russian organizations, such as

- Federal State Unitary Enterprise "Red Star"
- National Research Center "Kurchatov Institute"
- Power Efficiency Center INTER RAO UES
- Moscow State University
- CryoTrade, Ltd.

and under financial support of Russian Foundation of Basic Research, International Science & Technology Center, International Atomic Energy Agency, EU project HiPER

Cryogenic Target Factory for IFE: summary

- ☐ **FST technology has been developed at LPI**, which forms an isotropic ultrafine fuel layer inside moving free-standing targets
 - Our studies show that application of isotropic ultrafine fuel layer makes risk of the layer destruction minimal during target delivery
 - A full scaled scenario of the FST transmission line operation has been demonstrated for targets under \varnothing 2 mm, namely:
 - \Rightarrow Fueling a batch of free-standing targets (up to 1000 atm D₂ at 300 K),
 - ⇒ Fuel layering inside moving free-standing targets using FST technology: cryogenic layer up to 100 um-thick,
 - \Rightarrow Target injection into the test chamber with a rate of 0.1 Hz
 - ⇒ Target tracking using the Fourier holography approach (computer expts)
- ☐ Free-standing target positioning & transport using the quantum levitation effect of the high temperature superconductors (HTSC) have been proposed. POP experiments have proved the efficiency of this approach (result 2012-2014)
 - A prototypical FST layering module for rep-rate production of reactor-scaled cryogenic targets has been designed based on the results of calculations and mockups testing (result 2012-2014)
 - **LPI continue developing the of R&D program on CTF** in collaboration with Power Efficiency Center of INTERRAO UES & National Research Center "Kurchatov Institute". **New generation project is under consideration.**


Cryo target with ultrafine fuel layer (Ø1.5mm)

Targets rep-rate injection under gravity: 0.1Hz, 5K

Cryogenic gravity injector

HTSC maglev for target positioning & transport