The Role of MHD in 3D Aspects of Massive Gas Injection

V.A. Izzo,<sup>1</sup> N. Commaux,<sup>2</sup> N.W. Eidietis,<sup>3</sup> R.S. Granetz,<sup>4</sup> E. Hollmann,<sup>1</sup> G. Huijsmans,<sup>7</sup> D.A. Humphreys,<sup>3</sup> C.J. Lasnier,<sup>3</sup> M. Lehnen,<sup>7</sup> A. Loarte,<sup>7</sup> R.A. Moyer,<sup>1</sup> P.B. Parks,<sup>3</sup> C. Paz-Soldan,<sup>5</sup> R. Raman,<sup>6</sup> D. Shiraki,<sup>2</sup> E.J. Strait<sup>3</sup>

<sup>1</sup>UCSD, <sup>2</sup>ORNL, <sup>3</sup>GA, <sup>4</sup>MIT, <sup>5</sup>ORISE, <sup>6</sup>UW, <sup>7</sup>ITER IO



16 October 2014 TH/4-1





## Massive Gas Injection is a leading candidate for disruption mitigation on ITER

In the event that a disruption is unavoidable, the goal of massive gas injection (MGI) shutdown is to radiate plasma stored energy in order to:



- 1) Avoid conduction of large heat loads to the divertor during the thermal quench (TQ), and ...
- 2) Appropriately tailor the current quench (CQ) time to avoid large vessel forces





#### Goal of massive gas injection is to *isotropically* radiate plasma stored energy



SAN DIEGO



## NIMROD modeling finds a more complicated relationship







#### Outline

SAN DIEGO















SAN DIEGO

## NIMROD simulations produced two predictions regarding the role of the 1/1 in an MGI TQ\*



2) Absent other asymmetries, 1/1 phase is anti-aligned with gas jet 1) 1/1 phase determines location of toroidal radiation peaking due to asymmetric convected heat flux



UC San Diego



\*IZZO, V.A., Phys. Plasmas 20 (2013) 056107.

#### DIII-D experiments: Initial n=1 phase corresponds to NIMROD prediction



UC San Diego



#### DIII-D experiments: n=1 phase at TQ influenced by rotation, error fields



UC San D



### Experiments verify: the phase of the n=1 mode (relative to the gas jet) affects asymmetry

→ DIII-D experiments: Changing phase of applied n=1 fields changes measured radiation asymmetry during TQ





UC San Diego





#### Injected Ne plume spreads along B-field in one direction toroidally $\rightarrow$ toward HFS poloidally



UC San Diego



### Below midplane jet spreads in the opposite toroidal direction, also toward HFS







# NIMROD: $\mathbf{I}_{\mathbf{p}}$ direction affects direction of impurity spreading



### Relative spacing of gas valves affects interaction with 1/1 mode



### MGI15U and MGI135L will tend to drive the same 1/1 mode phase



### Simulation with both gas jets drives same mode phase as single jet



### Heat flux due to 1/1 convection is simultaneously away from both jets



#### In reversed helicity, spacing of two jets no longer coheres with 1/1 symmetry



### Interaction of 1/1 mode with each of the two impurity plumes is very different



### PART II. NIMROD asymmetry predictions and comparison with DIII-D measurements



FUSION FACINI

SAN DIEGO



### NIMROD predicts improved symmetry when both DIII-D jets are used



All cases in normal helicity





### NIMROD predicts improved symmetry when both DIII-D jets are used



All cases in normal helicity





#### DIII-D finds little or no variation in the asymmetry for one vs two gas jets







### NIMROD synthetic asymmetry diagnostic largely reproduces missing trend in DIII-D data







#### NIMROD: 2-point "TPF" does not capture real trend in TPF

SAN DIEGO



# NIMROD: reversing helicity increases TQ TPF with 2 jets



### Part III. ITER simulations use three upper ports allocated for TQ mitigation part of DMS



Total particle injection rate vs. time based on FLUENT calculations

 $\rightarrow$  Assumes 1 m delivery tube: unrealistically short!





### 3-valves and 1-valve have same TPF, different TQ durations

- Slight decrease in TPF during pre-TQ with 3 valves
- Virtually no change in TPF during TQ

#### • Single valve has higher maximum Prad

• Three valve has longer TQ duration



### NIMROD modeling provides new physics insights into MGI with single or multiple gas valves

NIMROD predicts that DIII-D 2-valve configuration reduces TPF, but increased diagnostic resolution is needed to capture trend, validate model

On ITER, 3 upper valve configuration is not found to reduce TPF compared to single upper valve during TQ

 $\rightarrow$  Single jet TPF during the thermal quench is not very severe in DIII-D or ITER





### NIMROD modeling provides new physics insights into MGI with single or multiple gas valves

NIMROD predicts that DIII-D 2-valve configuration reduces TPF, but increased diagnostic resolution is needed to capture trend, validate model

On ITER, 3 upper valve configuration is not found to reduce TPF compared to single upper valve during TQ

 $\rightarrow$  Single jet TPF during the thermal quench is not very severe in DIII-D or ITER

#### THANK YOU!





#### # of values $\rightarrow$ MHD Mode # $\rightarrow$ TQ duration?

#### 1 valve $\rightarrow$ n=1 dominant

#### 3 valves $\rightarrow$ n=3 dominant



SAN DIEGO