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Massive Gas Injection is a leading candidate for 

disruption mitigation on ITER 

In the event that a disruption is 
unavoidable, the goal of massive gas 
injection (MGI) shutdown is to radiate 
plasma stored energy in order to: 

1) Avoid conduction of large heat loads to the divertor during 
the thermal quench (TQ), and … 
 

2) Appropriately tailor the current quench (CQ) time to avoid 
large vessel forces 



Goal of massive gas injection is to isotropically 

radiate plasma stored energy 
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NIMROD modeling finds a more complicated 

relationship 
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NIMROD simulations produced two predictions 

regarding the role of the 1/1 in an MGI TQ* 

1) 1/1 phase determines 

location of toroidal 

radiation peaking due to 

asymmetric convected 

heat flux 

2) Absent other 

asymmetries, 1/1 phase is 

anti-aligned with gas jet 

*IZZO, V.A., Phys. Plasmas 20 (2013) 056107. 
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DIII-D experiments: Initial n=1 phase corresponds 

to NIMROD prediction 
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Rotation and 

error field 

effects (not in 

simulations) 

also 

determine 

final mode 

phase at TQ 

DIII-D experiments: n=1 phase at TQ influenced 

by rotation, error fields 



Experiments verify: the phase of the n=1 mode 

(relative to the gas jet) affects asymmetry 
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MGI15U Contours/isosurface of 

ionized Ne density 

Injected Ne plume spreads along B-field in one 
direction toroidally  toward HFS poloidally 
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MGI135L 

Below midplane jet spreads in the opposite 

toroidal direction, also toward HFS 
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Temperature 

contours 
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MGI15U and MGI135L will tend to drive the same 

1/1 mode phase  
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15º 135º 

Simulation with both gas jets drives same mode 

phase as single jet 
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Temperature 

contours 

Radiated power 

and n=1 amplitude 

Heat flux due to 1/1 convection is simultaneously 

away from both jets 
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15º 135º 

In reversed helicity, spacing of two jets no longer 

coheres with 1/1 symmetry 
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contours 

Radiated power 

and n=1 amplitude 

Interaction of 1/1 mode with each of the two 

impurity plumes is very different 
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PART II. NIMROD asymmetry predictions and 

comparison with DIII-D measurements 

 DIII-D has two fast radiated power 

measurements 

 Both jets are closer to Prad90 

Prad90 

Radiated Energy 

Toroidal angle 

Diagnostic locations 

TPF = Max(Wrad)/Mean(Wrad) 

 
Clearly, asymmetry calculated from 2 

measurement locations is an 
approximation… 
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NIMROD predicts improved symmetry when both 

DIII-D jets are used 

All cases in normal helicity 

Pre-TQ TQ 
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NIMROD predicts improved symmetry when both 

DIII-D jets are used 

All cases in normal helicity 

Pre-TQ TQ 



DIII-D finds little or no variation in the asymmetry 

for one vs two gas jets 
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NIMROD synthetic asymmetry diagnostic largely 

reproduces missing trend in DIII-D data 
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Pre-TQ TQ 

NIMROD “synthetic 2-point TPF” 

NIMROD: 2-point “TPF” does not capture real 

trend in TPF 

NIMROD real TPF 
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Pre-TQ TQ 

NIMROD: reversing helicity increases TQ TPF with 

2 jets 

Reversed Helicity Case 



Part III. ITER simulations use three upper ports 

allocated for TQ mitigation part of DMS 

Normalized 

Ne injection 

rate 

Fraction of 

plenum 

injected 

Total particle injection rate vs. time based on FLUENT calculations 

 
 Assumes 1 m delivery tube: unrealistically short! 



3-valves and 1-valve have same TPF, different TQ 

durations 

• Single valve has higher 

maximum Prad 

 

• Three valve has longer TQ 

duration 

• Slight decrease in TPF during 

pre-TQ with 3 valves 

 

• Virtually no change in TPF 

during TQ 

Time (ms) Number of valves 

TP
F
 



NIMROD modeling provides new physics insights 

into MGI with single or multiple gas valves 

 

NIMROD predicts that DIII-D 2-valve configuration reduces 

TPF, but increased diagnostic resolution is needed to 

capture trend, validate model  

 

On ITER, 3 upper valve configuration is not found to reduce 

TPF compared to single upper valve during TQ 

 

 
 Single jet TPF during the thermal quench is not very severe 

in DIII-D or ITER 
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THANK YOU! 
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