

25th IAEA FEC, Oct 13-18, 2014 St. Petersburg, Russia

Advances in H-mode Physics for Long Pulse Operation on EAST

B. N. Wan* for EAST team & collaborators*

*Email: bnwan@ipp.ac.cn

Institute of Plasma Physics, Chinese Academy of Sciences

Outline

> Introduction

- > EAST upgraded capabilities
- Physics advances for long pulse H-mode operation
- Summary & future plans

2

Introduction

- EAST as a SC machine aims at high performance long pulse operations.
- The enhanced capabilities since last IAEA-FEC allow EAST
 Fully non-inductive operation with high f_{bs}.
 Active control of transient and stationary heat load on divertors
- Significant progress in H-mode physics for long pulse operations

• Significance for ITER & future reactors

Outline

> Introduction

- > EAST upgraded capabilities
- Physics advances for long pulse H-mode operation
- Summary & future plans

4

H & CD capabilities allow truly advanced steady state plasma operations

ITER-like RF-dominant H&CD, capable to address key issues of high performance SS operations

NBI 4+4 MW (co/counter, 80kV)

ITER-like PFC upgrade facilitate high power long pulse operations

New or upgraded diagnostics for key profiles

> Polarimeter/ interferometer (**POINT**): n_e, j_ϕ, q, B_p profiles \succ Core & edge TS: T_e, n_e **>AXUV & Bolometer:** radiation **CXRS & XCS:** T_i, rotation >SXPHA & ECE: T_e > Reflectometry: pedestal n_e **He-BES:** edge n_e , T_e **Recip.-LPs:** SOL n_e , T_e , flow **Filterscope:** D_a , impurity >Bremsstrahlung: Z_{eff} **FIDA:** V_{fast-particle} ➤ High speed CCD **IR camera:** heat flux **Div-LPs:** div. particle/heat flux ▶.....

New RMP coils commissioned successfully

New RMP coils commissioned in ELM mitigation and error field measurements ASIPP

-200

-400

-600

ELM Mitigation:

- ELM mitigation observed with strong n=1 field with good resonance.
- > ELM frequency increased by a factor of 5.

0.3

0.2

-6

-4 -2 0 2

(b^P/B⁵)___(%)

4

Error field measurement:

X(A)

500

-500

Both measured amplitude and phase of the intrinsic error field depends on the RMP configuration used.
 Resonant: B_{2/1}/B₀ ~ 4.5e-5, φ ~ 154°
 Non-Resonant: B_{2/1}/B₀ ~ 0.8e-5, φ ~ 265°

Outline

> Introduction

- **EAST upgrade capabilities**
- Physics advances for long pulse H-mode operation
- Summary & future plans

Edge magnetic topology changed by LHCD, like RMPs

Flexible boundary control with LHCD

LHCD appears to be effective at controlling ELMs over a broad range q₉₅, in contrast to fixed RMP coils.

- Magnetic perturbations induced by LHCD are well aligned with the resonant magnetic surfaces at the edge.
- Closely matching the pitch of the edge field line for q₉₅.
- Highly localized at edge, without significantly affecting plasma core plasma.

EX/P3-8 Liang Y.; J. Li, H.Y. Guo, B. N. Wan et al., Nature Phys. 9, 817 (2013)

ASIPP

ELM control by SMBI

>ELM suppression by intermittent small scale turbulence

induced by SMBI #41819 (a) D 140ms (') 10 -SMBI 1500 (ZHX) J 500 4600 _____ 4650 4500 ----4550 4450 ms) D_x (A.U.) 2 (01. (c2) mm 3 (d2) Amp. (e2 (2Hz) f 67 1200 600 4565 4653 4658 4663 4555 4560 4668 4550 t (ms) t (ms)

EX/P3-10 Wang L.; J. Li, H. Y. Guo, B.N. Wan et al., Nature Phys. 9, 817 (2013)

Evidence of particle & heat exhaust by ECM in LHCD H-mode plasma

► Edge coherent mode (ECM) facilitates long pulse H-mode operations: $f = 15-90 \text{ kHz} \sim \omega_{*e}$, electron dia-direction, $n \sim 17$, $\lambda_{\theta} \sim 10 \text{ cm}$, m > 50

> Locates in the steep-gradient pedestal region, with $v_{e,ped}^* \sim 0.5 - 5$

▶ q_{95} >3.7, $\overline{n}_e = 1.9 - 5 \times 10^{19} m^{-3}$

Reciprocating-LP measurements directly show the ECM-driven radial particle and power transport.

EX/9-5 Xu G. H. Q. Wang et al., PRL 112, 185004 (2014)

Real-time Li aerosol injection → long pulse ELM-free H-mode

- Real-time Li aerosol injection can effectively suppress ELMs, then reduce heat load on divertor targets;
- Charged Li shield located at edge also provide a radiation heat exhaust;
- > This provide a new method to achieve stationary H-mode;
- ► Li aerosol facilitates edge coherent mode (ECM) for particle/power exhaust.

Demonstrated for the 1st time ELM pacing by innovative Li-granule injection

- **ELM trigger efficiency: ~100%.**
- > Triggering ELMs (~25 Hz) with ϕ 0.7 mm Li granules @ ~45 m/s.
- > Much lower divertor particle/heat loads than intrinsic type-I ELMs.

Integration for long pulse H-mode operations (2.45GHz-LHCD & Li-coating)

Long pulse H-mode operation with Newly installed **4.6GHz-LHCD& Li-coating**

Newly installed Co-Ip NBI system commissioned successfully → H-mode with NBI alone or modulation

ASIPP

Outline

> Introduction

- **EAST upgrade capabilities**
- Physics advances for long pulse H-mode operation
- Summary & future plans

Summary & Future Plans

- Most of the upgraded EAST systems have been successfully commissioned.
- Significant advances have been made in H-mode physics, especially at ELM control and divertor heat flux handling.
- The new EAST capabilities will provide possibilities to address some of key issues for long pulse high performance operations.

 ✓ Sufficient H&CD allow long pulse operation with ITER-like scheme: low torque, off-axis, dominated Te heating, low lp ramping rate

✓ Multi-tools allow flexible heat flux control:

>Transient (ELMs): LHCD, SMBI, Li-aerosol, Li/D₂ granule, RMP, ...

>Stationary: rad.-divertor/SMBI + edge topology change (LHCD/RMP)

Joint DIII-D/EAST Experiment Developed Fully Non-inductive Scenarios for Steady-State H-mode Operations on EAST

List of EAST contributions

- EX/P2-39 X. Gong: Development of Fully Non-inductive Scenario at High Bootstrap Current Fraction for Steady State Tokamak Operation on DIII-D and EAST
- EX/9-5 G. Xu: A Long-Pulse H-Mode Regime with a New Coherent Mode Providing Continuous Transport across Pedestal in EAST
- EX/P3-3 X. Zhang: High Power ICRF Systems and Heating Experiments in EAST
- EX/P3-4 G. Calabro: EAST Snowflake Experiment: Scenario Development and Edge Simulations
- EX/P3-5 B. Lyu: Core Plasma Rotation Characteristics of RF-Heated H-Mode Discharges on EAST
- EX/P3-6 L. Xiang: Investigation of Argon Seeding in Different Divertor Configurations in EAST and Corresponding SOLPS 5.0 Modeling
- EX/P3-7 G. Li: Studies of Impact of Edge Current Profiles, Plasma Shaping, Nonlinearity on Edge Localized Modes with BOUT++ Code
- EX/P3-8 Y. Liang: ELM Mitigation by Lower Hybrid Waves in EAST
- EX/P3-9 X. Gao: Study of Pedestal Turbulence on EAST Tokamak
- EX/P3-10 L. Wang: Progress in Active Control of Divertor Power Load in the EAST Tokamak
- EX/P3-11 B. Ding: Investigation of LHW-Plasma Coupling and CD Related to H-Mode Experiments in EAST
- EX/P3-12 Y. Xu: The Latest Development of EAST Neutral Beam Injector
- •FIP/P4-2 L. Hu: Progress on the ITER Diagnostic-Radial X-Ray Camera
- TH/P2-1 C. Pan: The Combining Effect of the Inductive Electric Field and the Lower HybridWaves on the Impurity Ions Toroidal Rotation in the Lower Hybrid Current Drive Tokamak Plasmas
- TH/P2-45 T. Xia: Fluid Simulation of Particle and Heat Fluxes during Burst of ELMs on EAST and DIII-D
- •TH/P3-13 X. Gong: Theoretical Analysis of ICRH Antenna's Impedance Matching for ELMy Plasmas on EAST
- EX/P6-54 G. Xu: The Role of Lithium Conditioning in Achieving High Performance Long Pulse H-Mode in the NSTX and EAST Devices
- MPT/P8-14 G. Luo: Overview on Design and Development of EAST Tungsten/Copper Divertor and Tungsten-Related Plasma-Wall Interaction Experiments

