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   Runaway electrons generation and control 
           Threshold electric field for runaway electron generation (EX/P2-50) 

           Runaway electrons control (EX/P2-48) 
 

   ECW experiments 
           Real time control of MHD instabilities (EX/P2-47) 

           Amplification of (N)TM by central EC power (EX/P2-54) 

           EC assisted plasma start-up (EX/P2-51) 
 

   Lithium Limiter experiments 
           Thermal load on the new lithium limiter (EX/P2-46) 

           Elongated plasmas 
 

   Plasma response to neon injection 
           Peaked density profiles (EX/P2-52) 

           Tearing mode instabilities (EX/P2-53) 
 

   MHD signals as disruption precursors 
 

   Scrape-Off Layer studies 
 

   Diagnostics 
           Cherenkov probe (EX/P2-49) 

           Gamma camera  

           Laser Induced Breakdown Spectroscopy 
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   Introduction 
 

   Experimental results 
  

   Contributions 
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Frascati Tokamak Upgrade 

Compact high magnetic field machine 
 

R0        0.935    m           Major radius 

a          0.30      m           Minor radius 

BT        2  8     T           Toroidal field 

Ip      0.2  1.6   MA        Plasma current 

ne     0.2  4.0  1020 m-3  Plasma density 

t              1.5   s            Pulse duration 
 

EC  140 GHz / 1.5 MW   Electron Cyclotron 

LH      8 GHz / 2.0 MW   Lower Hybrid 

  Stainless steel vacuum chamber 
 

  High field side Mo belt limiter 
 

  Outer Mo poloidal limiter 
 

  Li poloidal limiter 
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Runaway electrons generation 

Esposito B.   IAEA EX/P2-50 (2014) 

 Determination of the threshold density value to be achieved by means of 

massive gas injection for RE suppression in ITER. 
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 Conditions for RE generation 

in ohmic pulses investigated for a 

wide range of toroidal magnetic 

fields and plasma currents. 
 

 Critical electric field for RE 

generation 25 times larger than 

the one from collisional theory. 
 

 Results agree with the new 

threshold calculated including 

synchrotron radiation losses. 
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Runaway electrons control 

 Reduction of the dangerous effects of RE during disruptions in ITER 

operation. 

Carnevale D.   IAEA EX/P2-48 (2014) 
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 New RE control algorithm 

tested for real-time control of 

disruption-generated RE beam. 
 

 Minimize interaction with 

plasma facing components while 

RE current is ramped-down by 

induction. 
 

 Fission chambers signals 

show reduced plasma facing 

components interaction with the 

new controller. 
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Real time control of MHD instabilities 

Sozzi C.   IAEA EX/P2-47 (2014) 

 The experimental condition (control tools essential and based on a 

minimal set of diagnostics) mimics the situation of a fusion reactor. 

 Real time control of MHD 

instabilities using the new EC 

launcher with fast steering 

capability (1 deg / 10 ms). 
 

 Low-order tearing modes 

induced by neon injection or by 

near-limit density. 
 

 The data show a marked 

sensitivity of the resulting 

instability amplitude to the ECW 

deposition location. time [s] 
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Amplification of (N)TM by central EC power 

Nowak S.   IAEA EX/P2-54 (2014) 

 Important issue for the fusion plasma operations to avoid the degradation 

of the plasma confinement due to resistive instabilities.  

 Amplification mechanisms by EC due to: 
 

      Modification of the local plasma current density   

        and of the mode stability parameter 0. 

      Increased bootstrap effect proportional to p. 
 

2/1 NTM classification due to the instability 

amplification by increased bootstrap effect 
 

 Frequency increase due to torque action 

originated from the applied co-ECCD. 

No effect due to modification of rotation (ion 

polarization effect) because of the amplified size of 

existing perturbation. 
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EC assisted plasma start-up 

Granucci G.   IAEA EX/P2-51 (2014) 

 Experiments focused on ITER start-up issues: start-up at low toroidal electric 

field (0.5 V/m), even in presence of a large stray magnetic field (10 mT).  

E = 1.13 V/m 

E = 1.50 V/m 

with mode conversion 

without mode conversion 
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 Variations of launching angle: 

OX polarization conversion at 

reflection from inner wall  better 

power absorption  higher Te  

lower resistivity. 
 

 Variations of field null position 

via external vertical magnetic field. 
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Thermal load on the new lithium limiter 

Mazzitelli G.   IAEA EX/P2-46 (2014) 

 Liquid metals could be a viable solution for the problem of the power load 

on the divertor for steady state operation on the future reactors. 

 New actively Cooled Lithium Limiter (CLL) 

with 200C pressurized (30 bar) water circulation. 

10 MW/m2 target heat load. 
 

 CLL inserted close to the LCMS (2 MW/m2), 

without any damage to the limiter surface. 

 Heat load on the CLL from fast IR 

camera (■ 230C). 
 

 5 s dedicated pulses in preparation. 
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Elongated plasmas 

 Aim at investigating H-mode access, thus having the possibility to study 

the impact of ELMs on the CLL used as first limiter. 

Calabrò G., EPS P4.005 (2014)   –   Ramogida G., SOFT P2.014 (2014) 
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 Elongated plasmas (5.5 T, 200 kA, k1.2) 

with ECW additional heating (500 kW). 
 

 Vary local magnetic shear (flux surfaces 

opening) at the CLL. 

 Study on-going:      

X-point configuration 

with a magnetic single 

null inside the chamber. 



G. Pucella 25th IAEA FEC, St. Petersburg 2014, OV/5-4 14 

 

   Runaway electrons generation and control 
           Threshold electric field for runaway electron generation (EX/P2-50) 

           Runaway electrons control (EX/P2-48) 
 

   ECW experiments 
           Real time control of MHD instabilities (EX/P2-47) 

           Amplification of (N)TM by central EC power (EX/P2-54) 

           EC assisted plasma start-up (EX/P2-51) 
 

   Lithium Limiter experiments 
           Thermal load on the new lithium limiter (EX/P2-46) 

           Elongated plasmas 
 

   Plasma response to neon injection 
           Peaked density profiles (EX/P2-52) 

           Tearing mode instabilities (EX/P2-53) 
 

   MHD signals as disruption precursors 
 

   Scrape-Off Layer studies 
 

   Diagnostics 
           Cherenkov probe (EX/P2-49) 

           Gamma camera  

           Laser Induced Breakdown Spectroscopy 

Outline 

 

   Introduction 
 

   Experimental results 
  

   Contributions 



G. Pucella 25th IAEA FEC, St. Petersburg 2014, OV/5-4 15 

Plasma response to neon injection 

 It is important to determine the conditions of an increase of particle 

confinement while minimizing the amount of impurities needed. 

Mazzotta C.   IAEA EX/P2-52 (2014) Botrugno A.   IAEA EX/P2-53 (2014) 

 Density peaking increases in response to 

neon puffing. 
 

 More inward pinch than in the reference 

case at the same density without neon puffing. 

 Onset or amplification of 

low-order tearing modes. 
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MHD signals as disruption precursors 

 The definition of suitable disruption precursors is of crucial importance in 

order to trigger actions for avoiding or at least mitigating disruptions. 

Cianfarani C., EPS P5.165 (2013) 

 Full real-time algorithm for 

disruption prediction, based on MHD 

activity signals from Mirnov coils. 
 

 Threshold parameterization in 

terms of plasma parameters (BT, Ip) 

optimized for maximum of timely right 

alerts and minimum of false alerts. 
 

 Threshold optimization on 2000 

pulses covering a wide range of 

physical parameters. 

Non-disruptive pulses: 

Disruptive pulses: 

NO ALERT           88 % 

FALSE ALERT     12 % 

RIGHT ALERT      85 % 

MISSED ALERT   15 % 
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Scrape-Off Layer studies 

 This experiment contributed to the multi-tokamak scaling of SOL heat 

flux width of ITER limiter start-up plasma. 

Viola B., EPS P1.119 (2013) 
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 Data collected by two arrays of 

reciprocating Langmuir probes. 
 

 Scaling of the heat flux e-folding 

length  in the scrape-off layer with: 
 

      toroidal magnetic field (BT) 

      plasma current (Ip) 

      line-averaged density (ne) 

      power to SOL (PSOL) 
 

Strong dependency of  on Ip ( Ip
0.6) 

and PSOL ( PSOL
-0.8) 
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Cherenkov probe 

 Loss of confinement of fast electrons in the presence of high 

amplitude magnetic islands. 

Causa F.   IAEA EX/P2-49 (2014) 
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 Correlation between Cherenkov 

signal and magnetic island rotation. 
 

 Modelling and simulations (HMGC). 

 Collaboration with NCBJ. 
 

 Escaping fast electrons detected by 

Cherenkov radiation emitted in diamond probe. 

Sensor head 
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Gamma camera 

Marocco D., SOFT P2.046 (2014) 

 Study of the RE population during the current ramp-up, flat-top and 

ramp-down phases with sub-ms time resolution. 
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 Gamma-ray camera for in-flight runaway electrons 

emission produced by in-plasma bremsstrahlung. 
 

 Six radial lines of sight equipped with liquid organic 

scintillators (NE213). 
 

 n/ discrimination in conditions of very high count rate. 

Hard x-ray profiles 
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Laser Induced Breakdown Spectroscopy 

 Useful information on the surface elemental composition and fuel 

retention in present and future tokamaks, such as ITER. 

Maddaluno G., EPS P5.102 (2013) 
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 Laser Induced Breakdown Spectroscopy 

measurements performed on samples placed in 

FTU vacuum with toroidal field on (up to 4 T). 
 

 Experiments demonstrate the feasibility of in 

situ LIBS diagnostic of surface composition. 
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