Turbulence Behavior and Transport Response Approaching Burning Plasma Relevant Parameters

by G.R. McKee¹

with

C. Holland², Z. Yan¹, E.J. Doyle³, T.C. Luce⁴, A. Marinoni⁵, C.C. Petty⁴, T.L. Rhodes³, C. Rost⁵, L. Schmitz³, W.M. Solomon⁶, B.J. Tobias⁶, G. Wang³, L. Zeng³

¹University of Wisconsin, Madison
²University of California-San Diego
³University of California-Los Angeles
⁴General Atomics
⁵Massachusetts Institute of Technology
⁶Princeton Plasma Physics Laboratory

Presented at the 25th Fusion Energy Conference -International Atomic Energy Agency St. Petersburg, Russia

13-18 October 2014

Sheared Eddy Structure

Burning Plasma Parameters Strongly Impact Turbulence, Resulting Transport and the Energy Confinement Time, τ_{E}

- Burning plasmas will be dominated by α -driven electron heating and have low injected torque
 - 1. Low average toroidal rotation and **ExB** shear
 - 2. Equilibrated temperatures: T_e≈T_i
- ExB shear impacts low <u>and</u> high-k turbulence
- Turbulence and transport increase as $T_e/T_i \Rightarrow 1$
- Experimentally characterize turbulence; test & validate transport models in high performance burning-plasma regimes
 - How instabilities (ITG, TEM, ETG) affected
 - Impact on thermal, particle, momentum transport

Build Confidence in Predicting Confinement in ITER and future Burning Plasmas

1. Effects of Toroidal Rotation

2. Effects of Equilibrated Temperatures

3. Conclusions

1. Effects of Toroidal Rotation

2. Effects of Equilibrated Temperatures

3. Conclusions

G.R. McKEE/25th IAEA-FEC/Oct, 2014

Confinement Increases with Core Toroidal Rotation in High-β_N Advanced-Inductive H-Mode Plasmas

- Long-pulse, high-pressure plasmas: $\beta_N \approx 2.7$, 2-3 sec steady phase
 - Density, temperature, rotation held constant via feedback control
- Highest ExB shear <u>difference</u> near mid-radii (0.5 < ρ < 0.7)

Temperature and Density Profiles Well-Matched as Toroidal Rotation is Varied

Feedback control utilized to obtain similar profiles

- Core T_i well-matched; modest reduction in mid-radii
- Increased power required at low rotation

T_e profile exhibits effects of 3/2 mode

 Sustains q_{min}>1, prevents sawteeth in Advanced-Inductive plasmas

Density profiles well matched

- Modest changes in particle transport 6

TGLF Profiles Compare Reasonably Well With Some Notable Deviations

• TGLF calculates profiles:

- Heat and particle sources
- Gradients drive experimentally measured fluxes
- Boundary Conditions (ρ =0.8)

T_i well-matched in core

- Underestimated at high rotation

T_e overestimated

- Doesn't include 3/2-mode

Density profile overestimated

- Coupling of temperature and density profiles
- Large electron-ion thermal exchange at T_i »T_e

Low-k Turbulence Amplitude Reduced in Core at High Toroidal Rotation yet Remains Similar Radially Outwards

Low-k Turbulence Exhibits Similar Amplitude at Radially Outboard Locations Despite Differing ExB Shearing Rates

- Low-k turbulence amplitude similar outside ρ =0.5
 - **ExB** shearing rates differ
- Turbulence amplitude <u>similar</u> despite difference in shearing rates in 0.55 < ρ < 0.75

Turbulence Adjusts to Increasing ExB Shearing Rates by Faster Decorrelation and Reduced k_{θ}

• Tilted eddy structure observed in both high and low rotation plasmas

- **ExB** shearing rates similar locally, though toroidal rotation differs
- Finite k_r: contrasts with L-mode turbulence, which exhibits little/no tilting

G.R. McKEE/25th IAEA-FEC/Oct, 2014

Intermediate & Higher-Wavenumber Fluctuations Suppressed at Higher Toroidal Rotation: Challenges Expectations

11

- DBS & PCI show significantly lower high-k turbulence with increasing toroidal rotation
 - GYRO calculates higher linear growth rates
 - Exceed ExB shear rates

Increased Thermal and Particle Transport at Low Rotation

Consistent with turbulence changes at low rotation

- Low-k turbulence increase near ρ =0.5
 - Low-k decorrelation changes at larger radii with little amplitude change
- High-k turbulence increases

1. Effects of Toroidal Rotation

2. Effects as $T_e \Rightarrow T_i$

3. Conclusions

G.R. McKEE/25th IAEA-FEC/Oct, 2014

T_e Self-Similarly Increased with ECH + Fast Wave to Maintain Nearly Constant Gradient Scale Length

Advanced Inductive Plasmas:

- $\beta_N \sim 2.5$, ITER Shape, $q_{95}=5.8$

Core T_i well matched

 Mid-radii T_i exhibits reduction at higher T_e/T_i

~25% increase in T_e

- Fixed gradient scale lengths

Density reduced with T_e/T_i

- Density "pump-out"
- Gas-puffing partially compensates
- Reduced toroidal rotation with out compensation via NBI

T _e /T _l	τ ε (ms)	
Low	115	
High	75	

TGLF Calculated Profiles Reproduce Trends with Changing T_e/T_i

- T_i well matched in core, slightly overestimates in mid-radii at higher T_e/T_i
- Accurately reproduces increased T_e profile with corelocalized ECH source
- Captures reduction in density at increased T_e/T_i
- All trends in same direction as experiment

Low-k Density Turbulence and Ion Thermal Diffusivity Increase Across Profile as $T_e/T_i \Rightarrow 1$

- Spectrally uniform increase in fluctuation amplitude
 - Intermediate-k exhibits increase in amplitude with bursty features
- Ion, electron, momentum and particle diffusivity increase across profile
 - Explains 35% reduction in $\tau_{\rm E}$

GYRO Indicates T_e/T_i Increases Trapped Electron Mode Growth Rates More Than Ion Temperature Gradient Mode

• Can explain increased particle transport at higher T_e/T_i

- Frequency changes to electron diamagnetic direction at higher T_e/T_i
- Growth rates increase more strongly at intermediate $k_{\theta} \rho_{s}$

17

G.R. McKEE/25th IAEA-FEC/Oct, 2014

- CECE (Correlated Electron Cyclotron) Emission) measured localized T_e fluctuations
 - Spatially localized, low-k
- Spanally localized, low-k
 Consistent with increase in low-k
 density fluctuations
 GYRO: increased linear growth rates for low-k electron mode
 May reflect increase in Trapped Electron Consistent with increase in low-k density fluctuations

 - Mode (TEM) turbulence
- Consistent with increased electron thermal and particle transport with $T_{\rm e}/T_{\rm i}$

G. Wang, UCLA

Calculated Quasilinear Density Fluctuation Spectra Compare Well with Measured Turbulence Spectra

TGLF spectra reflect turbulence that drives heat fluxes

- Consistent with local density and temperature gradients and **ExB** shear
- Peak of spectra very similar

Turbulence and Transport are Altered in Fundamental Ways Approaching Burning Plasma Parameters

• Toroidal rotation and ExB shear alters high and low-k ñ:

- Low-k turbulence: Decorrelation rates change to match **ExB** shearing rates, eddy structure shifted, while amplitude is <u>not</u> significantly affected over outer-core (ρ =0.6-0.8); large suppression at ρ =0.5
- High-k turbulence: <u>decreases</u> amplitude at higher rotation
- Increasing $T_e/T_i \Rightarrow 1$ increases low-k density and temperature fluctuations
 - Consistent with GYRO growth rates, TGLF quasilinear fluctuation spectra
 - Transport increases in channels
- TGLF and GYRO capture profile and turbulence trends
- Future nonlinear simulations will quantitatively compare with fluctuation spectra and seek to identify modest discrepancies

Confinement Increases with Core Toroidal Rotation in High-β_N Advanced-Inductive H-Mode Plasmas

Confinement Reduced with Increased T_e/T_l

- ECH/RF increases T_e/T_i
 - 3.3 MW ECH/0.8 MW RF
 - -25% increase in T_e
- Advanced-Ind. Plasmas
 - $-I_{p} = 1.06 \text{ MA}$
 - $-B_{T} = 1.9 T$
 - q₉₅=5.9
 - ITER Shape (ISS)
 - Steady for 2.5 s

Т	τ	
Low	115	
High	75	

Time (ms)

G.R. McKEE/25th IAEA-FEC/Oct, 2014

Spatial Correlation Structure Demonstrates Velocity Shear Effects on Turbulent Eddy Structure

 Poloidal correlation function in low rotation plasma exhibits shorter wavelength

- Consistent with frequency/wavenumber spectra
- Amplitude is similar: structure varies with rotation

Low-k Turbulence Suppression Localized to Mid-Core Zone

• Low-k turbulence amplitude similar outside ρ =0.5

- **ExB** shearing rates differ
- ExB and turbulence velocities agree very well
 - BES: Time-lag cross-correlation
 - CER: Er via Force Balance
 - Deviation at outer radii may reflect strong diamagnetic flows

Establishing the Connection between Local Turbulence Behavior, Transport and $\tau_{\rm E}$ in Burning Plasma Conditions

- Systematically evaluated dependence of turbulence, transport, growth rates, profiles, τ_{E} approaching burning plasma parameters:
 - Lower injected torque: lower toroidal rotation, averaged ExB shear
 - Increasing $T_{\rm e}/T_{\rm l}$ towards unity

• Fluctuations consistent with and explain transport modification:

- Increased ExB shearing at higher toroidal rotation => reduced turbulence, transport, higher τ_E
 - Consistent with low-k linear growth rates
 - Reduced high-k fluctuations, yet higher calculated growth rates
- Increase fluctuation amplitude as $T_{\rm e} \Rightarrow T_{\rm l}$
 - Particle, momentum and thermal transport increased

Testing TGLF and GYRO in BP-relevant high-performance scenarios

- TGLF modeling reasonably reproduces observed profiles
 - Identified notable discrepancies (density profiles, mid-radii temperatures)
- Developing the scientific basis for predicting transport in burning plasma conditions

Turbulent Eddy Structure Tilted by Velocity Shear

- Tilted eddy structure observed in both high and low rotation plasmas
 - **ExB** shearing rates similar locally, though toroidal rotation differs
- Contrasts with L-mode turbulence, which exhibits little tilting

Turbulence Adjusts to Increasing ExB Shearing Rates by Faster Decorrelation and Reduced k_{θ}

• Turbulence reorganizes to new shearing rates, but *isn't suppressed*

- Consistent with frequency/wavenumber spectra changes
- Similar ñ/n amplitude with rotation over 0.6< ρ <0.8 region
- Little change in radial correlation length

Comparison of Turbulence Decorrelation time, ExB time poloidal wavenumber (ρ =0.6)

Ω	τc (μs)	τ _{εxb} (μs)	k _{θ,pk} (cm ⁻¹)
High	2.5	3.5	0.4
Low	5	7	0.5